Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=817−3113,x2=817+3113
Alternative Form
x1≈−1.861305,x2≈6.111305
Evaluate
(2x−7)(4x−3)=112
Expand the expression
More Steps

Evaluate
(2x−7)(4x−3)
Apply the distributive property
2x×4x−2x×3−7×4x−(−7×3)
Multiply the terms
More Steps

Evaluate
2x×4x
Multiply the numbers
8x×x
Multiply the terms
8x2
8x2−2x×3−7×4x−(−7×3)
Multiply the numbers
8x2−6x−7×4x−(−7×3)
Multiply the numbers
8x2−6x−28x−(−7×3)
Multiply the numbers
8x2−6x−28x−(−21)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8x2−6x−28x+21
Subtract the terms
More Steps

Evaluate
−6x−28x
Collect like terms by calculating the sum or difference of their coefficients
(−6−28)x
Subtract the numbers
−34x
8x2−34x+21
8x2−34x+21=112
Move the expression to the left side
8x2−34x−91=0
Substitute a=8,b=−34 and c=−91 into the quadratic formula x=2a−b±b2−4ac
x=2×834±(−34)2−4×8(−91)
Simplify the expression
x=1634±(−34)2−4×8(−91)
Simplify the expression
More Steps

Evaluate
(−34)2−4×8(−91)
Multiply
More Steps

Multiply the terms
4×8(−91)
Rewrite the expression
−4×8×91
Multiply the terms
−2912
(−34)2−(−2912)
Rewrite the expression
342−(−2912)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
342+2912
Evaluate the power
1156+2912
Add the numbers
4068
x=1634±4068
Simplify the radical expression
More Steps

Evaluate
4068
Write the expression as a product where the root of one of the factors can be evaluated
36×113
Write the number in exponential form with the base of 6
62×113
The root of a product is equal to the product of the roots of each factor
62×113
Reduce the index of the radical and exponent with 2
6113
x=1634±6113
Separate the equation into 2 possible cases
x=1634+6113x=1634−6113
Simplify the expression
More Steps

Evaluate
x=1634+6113
Divide the terms
More Steps

Evaluate
1634+6113
Rewrite the expression
162(17+3113)
Cancel out the common factor 2
817+3113
x=817+3113
x=817+3113x=1634−6113
Simplify the expression
More Steps

Evaluate
x=1634−6113
Divide the terms
More Steps

Evaluate
1634−6113
Rewrite the expression
162(17−3113)
Cancel out the common factor 2
817−3113
x=817−3113
x=817+3113x=817−3113
Solution
x1=817−3113,x2=817+3113
Alternative Form
x1≈−1.861305,x2≈6.111305
Show Solution
