Question
Simplify the expression
12x3−12x2
Evaluate
(3x−3)(2x2×2×1)
Remove the parentheses
(3x−3)×2x2×2×1
Rewrite the expression
(3x−3)×2x2×2
Multiply the terms
(3x−3)×4x2
Multiply the terms
4x2(3x−3)
Apply the distributive property
4x2×3x−4x2×3
Multiply the terms
More Steps

Evaluate
4x2×3x
Multiply the numbers
12x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
12x3
12x3−4x2×3
Solution
12x3−12x2
Show Solution

Factor the expression
12x2(x−1)
Evaluate
(3x−3)(2x2×2×1)
Remove the parentheses
(3x−3)×2x2×2×1
Multiply the terms
More Steps

Multiply the terms
2x2×2×1
Rewrite the expression
2x2×2
Multiply the terms
4x2
(3x−3)×4x2
Multiply the terms
4x2(3x−3)
Factor the expression
4x2×3(x−1)
Solution
12x2(x−1)
Show Solution

Find the roots
x1=0,x2=1
Evaluate
(3x−3)(2x2×2×1)
To find the roots of the expression,set the expression equal to 0
(3x−3)(2x2×2×1)=0
Multiply the terms
More Steps

Multiply the terms
2x2×2×1
Rewrite the expression
2x2×2
Multiply the terms
4x2
(3x−3)×4x2=0
Multiply the terms
4x2(3x−3)=0
Elimination the left coefficient
x2(3x−3)=0
Separate the equation into 2 possible cases
x2=03x−3=0
The only way a power can be 0 is when the base equals 0
x=03x−3=0
Solve the equation
More Steps

Evaluate
3x−3=0
Move the constant to the right-hand side and change its sign
3x=0+3
Removing 0 doesn't change the value,so remove it from the expression
3x=3
Divide both sides
33x=33
Divide the numbers
x=33
Divide the numbers
More Steps

Evaluate
33
Reduce the numbers
11
Calculate
1
x=1
x=0x=1
Solution
x1=0,x2=1
Show Solution
