Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=25−137,x2=25+137
Alternative Form
x1≈−3.35235,x2≈8.35235
Evaluate
63(x−5)×42x=7
Simplify
More Steps

Evaluate
63(x−5)×42x
Reduce the fraction
2x−5×42x
Cancel out the common factor 2
2x−5×2x
Multiply the terms
2×2(x−5)x
Multiply the terms
2×2x(x−5)
Multiply the terms
4x(x−5)
4x(x−5)=7
Rewrite the expression
41x2−45x=7
Move the expression to the left side
41x2−45x−7=0
Multiply both sides
4(41x2−45x−7)=4×0
Calculate
x2−5x−28=0
Substitute a=1,b=−5 and c=−28 into the quadratic formula x=2a−b±b2−4ac
x=25±(−5)2−4(−28)
Simplify the expression
More Steps

Evaluate
(−5)2−4(−28)
Multiply the numbers
More Steps

Evaluate
4(−28)
Multiplying or dividing an odd number of negative terms equals a negative
−4×28
Multiply the numbers
−112
(−5)2−(−112)
Rewrite the expression
52−(−112)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+112
Evaluate the power
25+112
Add the numbers
137
x=25±137
Separate the equation into 2 possible cases
x=25+137x=25−137
Solution
x1=25−137,x2=25+137
Alternative Form
x1≈−3.35235,x2≈8.35235
Show Solution
