Question
Simplify the expression
2a23a−2
Evaluate
2a3−2a−a21−a2
Reduce fractions to a common denominator
2a×a(3−2a)a−a2×2(1−a2)×2
Use the commutative property to reorder the terms
2a×a(3−2a)a−2a2(1−a2)×2
Multiply the terms
2a2(3−2a)a−2a2(1−a2)×2
Write all numerators above the common denominator
2a2(3−2a)a−(1−a2)×2
Multiply the terms
More Steps

Evaluate
(3−2a)a
Apply the distributive property
3a−2a×a
Multiply the terms
3a−2a2
2a23a−2a2−(1−a2)×2
Multiply the terms
More Steps

Evaluate
(1−a2)×2
Apply the distributive property
1×2−a2×2
Any expression multiplied by 1 remains the same
2−a2×2
Use the commutative property to reorder the terms
2−2a2
2a23a−2a2−(2−2a2)
Solution
More Steps

Evaluate
3a−2a2−(2−2a2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3a−2a2−2+2a2
The sum of two opposites equals 0
More Steps

Evaluate
−2a2+2a2
Collect like terms
(−2+2)a2
Add the coefficients
0×a2
Calculate
0
3a+0−2
Remove 0
3a−2
2a23a−2
Show Solution

Find the excluded values
a=0
Evaluate
2a3−2a−a21−a2
To find the excluded values,set the denominators equal to 0
2a=0a2=0
Solve the equations
a=0a2=0
The only way a power can be 0 is when the base equals 0
a=0a=0
Solution
a=0
Show Solution

Find the roots
a=32
Alternative Form
a=0.6˙
Evaluate
2a3−2a−a21−a2
To find the roots of the expression,set the expression equal to 0
2a3−2a−a21−a2=0
Find the domain
More Steps

Evaluate
{2a=0a2=0
Calculate
{a=0a2=0
The only way a power can not be 0 is when the base not equals 0
{a=0a=0
Find the intersection
a=0
2a3−2a−a21−a2=0,a=0
Calculate
2a3−2a−a21−a2=0
Subtract the terms
More Steps

Simplify
2a3−2a−a21−a2
Reduce fractions to a common denominator
2a×a(3−2a)a−a2×2(1−a2)×2
Use the commutative property to reorder the terms
2a×a(3−2a)a−2a2(1−a2)×2
Multiply the terms
2a2(3−2a)a−2a2(1−a2)×2
Write all numerators above the common denominator
2a2(3−2a)a−(1−a2)×2
Multiply the terms
More Steps

Evaluate
(3−2a)a
Apply the distributive property
3a−2a×a
Multiply the terms
3a−2a2
2a23a−2a2−(1−a2)×2
Multiply the terms
More Steps

Evaluate
(1−a2)×2
Apply the distributive property
1×2−a2×2
Any expression multiplied by 1 remains the same
2−a2×2
Use the commutative property to reorder the terms
2−2a2
2a23a−2a2−(2−2a2)
Subtract the terms
More Steps

Evaluate
3a−2a2−(2−2a2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3a−2a2−2+2a2
The sum of two opposites equals 0
3a+0−2
Remove 0
3a−2
2a23a−2
2a23a−2=0
Cross multiply
3a−2=2a2×0
Simplify the equation
3a−2=0
Move the constant to the right side
3a=0+2
Removing 0 doesn't change the value,so remove it from the expression
3a=2
Divide both sides
33a=32
Divide the numbers
a=32
Check if the solution is in the defined range
a=32,a=0
Solution
a=32
Alternative Form
a=0.6˙
Show Solution
