Question
(3−2x)2×4x2−9=0
Solve the equation
x1=43−21,x2=43+21
Alternative Form
x1≈−0.395644,x2≈1.895644
Evaluate
(3−2x)2×4x2−9=0
Use the commutative property to reorder the terms
4(3−2x)2x2−9=0
Calculate
More Steps

Calculate
4(3−2x)2x2
Simplify
4(9−12x+4x2)x2
Simplify
More Steps

Evaluate
4(9−12x+4x2)
Apply the distributive property
4×9−4×12x+4×4x2
Multiply the numbers
36−4×12x+4×4x2
Multiply the numbers
36−48x+4×4x2
Multiply the numbers
36−48x+16x2
(36−48x+16x2)x2
Apply the distributive property
36x2−48x×x2+16x2×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
36x2−48x3+16x2×x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
36x2−48x3+16x4
36x2−48x3+16x4−9=0
Factor the expression
(6x−4x2+3)(6x−4x2−3)=0
Separate the equation into 2 possible cases
6x−4x2+3=06x−4x2−3=0
Solve the equation
More Steps

Evaluate
6x−4x2+3=0
Rewrite in standard form
−4x2+6x+3=0
Multiply both sides
4x2−6x−3=0
Substitute a=4,b=−6 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×46±(−6)2−4×4(−3)
Simplify the expression
x=86±(−6)2−4×4(−3)
Simplify the expression
More Steps

Evaluate
(−6)2−4×4(−3)
Multiply
(−6)2−(−48)
Rewrite the expression
62−(−48)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+48
Evaluate the power
36+48
Add the numbers
84
x=86±84
Simplify the radical expression
More Steps

Evaluate
84
Write the expression as a product where the root of one of the factors can be evaluated
4×21
Write the number in exponential form with the base of 2
22×21
The root of a product is equal to the product of the roots of each factor
22×21
Reduce the index of the radical and exponent with 2
221
x=86±221
Separate the equation into 2 possible cases
x=86+221x=86−221
Simplify the expression
x=43+21x=86−221
Simplify the expression
x=43+21x=43−21
x=43+21x=43−216x−4x2−3=0
Solve the equation
More Steps

Evaluate
6x−4x2−3=0
Rewrite in standard form
−4x2+6x−3=0
Multiply both sides
4x2−6x+3=0
Substitute a=4,b=−6 and c=3 into the quadratic formula x=2a−b±b2−4ac
x=2×46±(−6)2−4×4×3
Simplify the expression
x=86±(−6)2−4×4×3
Simplify the expression
More Steps

Evaluate
(−6)2−4×4×3
Multiply the terms
(−6)2−48
Rewrite the expression
62−48
Evaluate the power
36−48
Subtract the numbers
−12
x=86±−12
The expression is undefined in the set of real numbers
x∈/R
x=43+21x=43−21x∈/R
Find the union
x=43+21x=43−21
Solution
x1=43−21,x2=43+21
Alternative Form
x1≈−0.395644,x2≈1.895644
Show Solution
