Question
Simplify the expression
2116−2164i
Evaluate
32i×42i1−4i
Divide the terms
More Steps

Evaluate
42i1−4i
Multiply by the Conjugate
42i×i(1−4i)i
Calculate
More Steps

Evaluate
(1−4i)i
Apply the distributive property
i−4i×i
Multiply the numbers
i+4
Reorder the terms
4+i
42i×i4+i
Calculate
More Steps

Evaluate
42i×i
Multiply
42i2
Use i2=−1 to transform the expression
42(−1)
Calculate
−42
−424+i
Use b−a=−ba=−ba to rewrite the fraction
−424+i
Simplify
−212−421i
32i(−212−421i)
Apply the distributive property
32i(−212)+32i(−421i)
Multiply the numbers
−2164i+32i(−421i)
Multiply the numbers
More Steps

Evaluate
32i(−421i)
Multiply
32(−421)i2
Multiply
−2116i2
Use i2=−1 to transform the expression
−2116(−1)
Calculate
2116
−2164i+2116
Solution
2116−2164i
Show Solution
