Question
Solve the equation
x1=−2775555,x2=0,x3=2775555
Alternative Form
x1≈−0.00849,x2=0,x3≈0.00849
Evaluate
(35x×75)(37x2×5)=35x
Remove the parentheses
35x×75×37x2×5=35x
Multiply
More Steps

Evaluate
35x×75×37x2×5
Multiply the terms
More Steps

Evaluate
35×75×37×5
Multiply the terms
2625×37×5
Multiply the terms
97125×5
Multiply the numbers
485625
485625x×x2
Multiply the terms with the same base by adding their exponents
485625x1+2
Add the numbers
485625x3
485625x3=35x
Add or subtract both sides
485625x3−35x=0
Factor the expression
35x(13875x2−1)=0
Divide both sides
x(13875x2−1)=0
Separate the equation into 2 possible cases
x=013875x2−1=0
Solve the equation
More Steps

Evaluate
13875x2−1=0
Move the constant to the right-hand side and change its sign
13875x2=0+1
Removing 0 doesn't change the value,so remove it from the expression
13875x2=1
Divide both sides
1387513875x2=138751
Divide the numbers
x2=138751
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±138751
Simplify the expression
More Steps

Evaluate
138751
To take a root of a fraction,take the root of the numerator and denominator separately
138751
Simplify the radical expression
138751
Simplify the radical expression
55551
Multiply by the Conjugate
5555×555555
Multiply the numbers
2775555
x=±2775555
Separate the equation into 2 possible cases
x=2775555x=−2775555
x=0x=2775555x=−2775555
Solution
x1=−2775555,x2=0,x3=2775555
Alternative Form
x1≈−0.00849,x2=0,x3≈0.00849
Show Solution
