Question
Simplify the expression
6c2+23c+20
Evaluate
(3c+4)(2c+5)
Apply the distributive property
3c×2c+3c×5+4×2c+4×5
Multiply the terms
More Steps

Evaluate
3c×2c
Multiply the numbers
6c×c
Multiply the terms
6c2
6c2+3c×5+4×2c+4×5
Multiply the numbers
6c2+15c+4×2c+4×5
Multiply the numbers
6c2+15c+8c+4×5
Multiply the numbers
6c2+15c+8c+20
Solution
More Steps

Evaluate
15c+8c
Collect like terms by calculating the sum or difference of their coefficients
(15+8)c
Add the numbers
23c
6c2+23c+20
Show Solution

Find the roots
c1=−25,c2=−34
Alternative Form
c1=−2.5,c2=−1.3˙
Evaluate
(3c+4)(2c+5)
To find the roots of the expression,set the expression equal to 0
(3c+4)(2c+5)=0
Separate the equation into 2 possible cases
3c+4=02c+5=0
Solve the equation
More Steps

Evaluate
3c+4=0
Move the constant to the right-hand side and change its sign
3c=0−4
Removing 0 doesn't change the value,so remove it from the expression
3c=−4
Divide both sides
33c=3−4
Divide the numbers
c=3−4
Use b−a=−ba=−ba to rewrite the fraction
c=−34
c=−342c+5=0
Solve the equation
More Steps

Evaluate
2c+5=0
Move the constant to the right-hand side and change its sign
2c=0−5
Removing 0 doesn't change the value,so remove it from the expression
2c=−5
Divide both sides
22c=2−5
Divide the numbers
c=2−5
Use b−a=−ba=−ba to rewrite the fraction
c=−25
c=−34c=−25
Solution
c1=−25,c2=−34
Alternative Form
c1=−2.5,c2=−1.3˙
Show Solution
