Question
Simplify the expression
216c3−288c2+96c
Evaluate
(3c−2)2×24c
Use the commutative property to reorder the terms
24(3c−2)2c
Expand the expression
More Steps

Evaluate
(3c−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(3c)2−2×3c×2+22
Calculate
9c2−12c+4
24(9c2−12c+4)c
Multiply the terms
More Steps

Evaluate
24(9c2−12c+4)
Apply the distributive property
24×9c2−24×12c+24×4
Multiply the numbers
216c2−24×12c+24×4
Multiply the numbers
216c2−288c+24×4
Multiply the numbers
216c2−288c+96
(216c2−288c+96)c
Apply the distributive property
216c2×c−288c×c+96c
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
216c3−288c×c+96c
Solution
216c3−288c2+96c
Show Solution

Find the roots
c1=0,c2=32
Alternative Form
c1=0,c2=0.6˙
Evaluate
(3c−2)2×24c
To find the roots of the expression,set the expression equal to 0
(3c−2)2×24c=0
Use the commutative property to reorder the terms
24(3c−2)2c=0
Elimination the left coefficient
(3c−2)2c=0
Separate the equation into 2 possible cases
(3c−2)2=0c=0
Solve the equation
More Steps

Evaluate
(3c−2)2=0
The only way a power can be 0 is when the base equals 0
3c−2=0
Move the constant to the right-hand side and change its sign
3c=0+2
Removing 0 doesn't change the value,so remove it from the expression
3c=2
Divide both sides
33c=32
Divide the numbers
c=32
c=32c=0
Solution
c1=0,c2=32
Alternative Form
c1=0,c2=0.6˙
Show Solution
