Question
Simplify the expression
−12g3+16g2
Evaluate
(3g−4)(−2g×2g×1)
Rewrite the expression
(3g−4)(−2)g×2g×1
Rewrite the expression
(3g−4)(−2)g×2g
Rewrite the expression
−(3g−4)×2g×2g
Multiply the terms
−(3g−4)×4g×g
Multiply the terms
−(3g−4)×4g2
Multiply the first two terms
(−3g+4)×4g2
Multiply the terms
4g2(−3g+4)
Apply the distributive property
4g2(−3g)+4g2×4
Multiply the terms
More Steps

Evaluate
4g2(−3g)
Multiply the numbers
More Steps

Evaluate
4(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−4×3
Multiply the numbers
−12
−12g2×g
Multiply the terms
More Steps

Evaluate
g2×g
Use the product rule an×am=an+m to simplify the expression
g2+1
Add the numbers
g3
−12g3
−12g3+4g2×4
Solution
−12g3+16g2
Show Solution

Find the roots
g1=0,g2=34
Alternative Form
g1=0,g2=1.3˙
Evaluate
(3g−4)(−2g×2g×1)
To find the roots of the expression,set the expression equal to 0
(3g−4)(−2g×2g×1)=0
Multiply the terms
More Steps

Multiply the terms
−2g×2g×1
Rewrite the expression
−2g×2g
Multiply the terms
−4g×g
Multiply the terms
−4g2
(3g−4)(−4g2)=0
Multiply the terms
−4g2(3g−4)=0
Change the sign
4g2(3g−4)=0
Elimination the left coefficient
g2(3g−4)=0
Separate the equation into 2 possible cases
g2=03g−4=0
The only way a power can be 0 is when the base equals 0
g=03g−4=0
Solve the equation
More Steps

Evaluate
3g−4=0
Move the constant to the right-hand side and change its sign
3g=0+4
Removing 0 doesn't change the value,so remove it from the expression
3g=4
Divide both sides
33g=34
Divide the numbers
g=34
g=0g=34
Solution
g1=0,g2=34
Alternative Form
g1=0,g2=1.3˙
Show Solution
