Question
Simplify the expression
9k3−15k2−3k+6
Evaluate
(3k−2)(3k2−3k−3)
Apply the distributive property
3k×3k2−3k×3k−3k×3−2×3k2−(−2×3k)−(−2×3)
Multiply the terms
More Steps

Evaluate
3k×3k2
Multiply the numbers
9k×k2
Multiply the terms
More Steps

Evaluate
k×k2
Use the product rule an×am=an+m to simplify the expression
k1+2
Add the numbers
k3
9k3
9k3−3k×3k−3k×3−2×3k2−(−2×3k)−(−2×3)
Multiply the terms
More Steps

Evaluate
3k×3k
Multiply the numbers
9k×k
Multiply the terms
9k2
9k3−9k2−3k×3−2×3k2−(−2×3k)−(−2×3)
Multiply the numbers
9k3−9k2−9k−2×3k2−(−2×3k)−(−2×3)
Multiply the numbers
9k3−9k2−9k−6k2−(−2×3k)−(−2×3)
Multiply the numbers
9k3−9k2−9k−6k2−(−6k)−(−2×3)
Multiply the numbers
9k3−9k2−9k−6k2−(−6k)−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
9k3−9k2−9k−6k2+6k+6
Subtract the terms
More Steps

Evaluate
−9k2−6k2
Collect like terms by calculating the sum or difference of their coefficients
(−9−6)k2
Subtract the numbers
−15k2
9k3−15k2−9k+6k+6
Solution
More Steps

Evaluate
−9k+6k
Collect like terms by calculating the sum or difference of their coefficients
(−9+6)k
Add the numbers
−3k
9k3−15k2−3k+6
Show Solution

Factor the expression
3(3k−2)(k2−k−1)
Evaluate
(3k−2)(3k2−3k−3)
Factor the expression
(3k−2)×3(k2−k−1)
Solution
3(3k−2)(k2−k−1)
Show Solution

Find the roots
k1=21−5,k2=32,k3=21+5
Alternative Form
k1≈−0.618034,k2=0.6˙,k3≈1.618034
Evaluate
(3k−2)(3k2−3k−3)
To find the roots of the expression,set the expression equal to 0
(3k−2)(3k2−3k−3)=0
Separate the equation into 2 possible cases
3k−2=03k2−3k−3=0
Solve the equation
More Steps

Evaluate
3k−2=0
Move the constant to the right-hand side and change its sign
3k=0+2
Removing 0 doesn't change the value,so remove it from the expression
3k=2
Divide both sides
33k=32
Divide the numbers
k=32
k=323k2−3k−3=0
Solve the equation
More Steps

Evaluate
3k2−3k−3=0
Substitute a=3,b=−3 and c=−3 into the quadratic formula k=2a−b±b2−4ac
k=2×33±(−3)2−4×3(−3)
Simplify the expression
k=63±(−3)2−4×3(−3)
Simplify the expression
More Steps

Evaluate
(−3)2−4×3(−3)
Multiply
(−3)2−(−36)
Rewrite the expression
32−(−36)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+36
Evaluate the power
9+36
Add the numbers
45
k=63±45
Simplify the radical expression
More Steps

Evaluate
45
Write the expression as a product where the root of one of the factors can be evaluated
9×5
Write the number in exponential form with the base of 3
32×5
The root of a product is equal to the product of the roots of each factor
32×5
Reduce the index of the radical and exponent with 2
35
k=63±35
Separate the equation into 2 possible cases
k=63+35k=63−35
Simplify the expression
k=21+5k=63−35
Simplify the expression
k=21+5k=21−5
k=32k=21+5k=21−5
Solution
k1=21−5,k2=32,k3=21+5
Alternative Form
k1≈−0.618034,k2=0.6˙,k3≈1.618034
Show Solution
