Question
Simplify the expression
−6m5−9m4+8m2+12m
Evaluate
(3m2×m−4)(−2m2−3m×1)
Multiply
More Steps

Multiply the terms
3m2×m
Multiply the terms with the same base by adding their exponents
3m2+1
Add the numbers
3m3
(3m3−4)(−2m2−3m×1)
Multiply the terms
(3m3−4)(−2m2−3m)
Apply the distributive property
3m3(−2m2)−3m3×3m−4(−2m2)−(−4×3m)
Multiply the terms
More Steps

Evaluate
3m3(−2m2)
Multiply the numbers
More Steps

Evaluate
3(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−3×2
Multiply the numbers
−6
−6m3×m2
Multiply the terms
More Steps

Evaluate
m3×m2
Use the product rule an×am=an+m to simplify the expression
m3+2
Add the numbers
m5
−6m5
−6m5−3m3×3m−4(−2m2)−(−4×3m)
Multiply the terms
More Steps

Evaluate
3m3×3m
Multiply the numbers
9m3×m
Multiply the terms
More Steps

Evaluate
m3×m
Use the product rule an×am=an+m to simplify the expression
m3+1
Add the numbers
m4
9m4
−6m5−9m4−4(−2m2)−(−4×3m)
Multiply the numbers
More Steps

Evaluate
−4(−2)
Multiplying or dividing an even number of negative terms equals a positive
4×2
Multiply the numbers
8
−6m5−9m4+8m2−(−4×3m)
Multiply the numbers
−6m5−9m4+8m2−(−12m)
Solution
−6m5−9m4+8m2+12m
Show Solution

Factor the expression
−m(3m3−4)(2m+3)
Evaluate
(3m2×m−4)(−2m2−3m×1)
Multiply
More Steps

Multiply the terms
3m2×m
Multiply the terms with the same base by adding their exponents
3m2+1
Add the numbers
3m3
(3m3−4)(−2m2−3m×1)
Multiply the terms
(3m3−4)(−2m2−3m)
Factor the expression
More Steps

Evaluate
−2m2−3m
Rewrite the expression
−m×2m−m×3
Factor out −m from the expression
−m(2m+3)
(3m3−4)(−m)(2m+3)
Solution
−m(3m3−4)(2m+3)
Show Solution

Find the roots
m1=−23,m2=0,m3=3336
Alternative Form
m1=−1.5,m2=0,m3≈1.100642
Evaluate
(3m2×m−4)(−2m2−3m×1)
To find the roots of the expression,set the expression equal to 0
(3m2×m−4)(−2m2−3m×1)=0
Multiply
More Steps

Multiply the terms
3m2×m
Multiply the terms with the same base by adding their exponents
3m2+1
Add the numbers
3m3
(3m3−4)(−2m2−3m×1)=0
Multiply the terms
(3m3−4)(−2m2−3m)=0
Separate the equation into 2 possible cases
3m3−4=0−2m2−3m=0
Solve the equation
More Steps

Evaluate
3m3−4=0
Move the constant to the right-hand side and change its sign
3m3=0+4
Removing 0 doesn't change the value,so remove it from the expression
3m3=4
Divide both sides
33m3=34
Divide the numbers
m3=34
Take the 3-th root on both sides of the equation
3m3=334
Calculate
m=334
Simplify the root
More Steps

Evaluate
334
To take a root of a fraction,take the root of the numerator and denominator separately
3334
Multiply by the Conjugate
33×33234×332
Simplify
33×33234×39
Multiply the numbers
33×332336
Multiply the numbers
3336
m=3336
m=3336−2m2−3m=0
Solve the equation
More Steps

Evaluate
−2m2−3m=0
Factor the expression
More Steps

Evaluate
−2m2−3m
Rewrite the expression
−m×2m−m×3
Factor out −m from the expression
−m(2m+3)
−m(2m+3)=0
When the product of factors equals 0,at least one factor is 0
−m=02m+3=0
Solve the equation for m
m=02m+3=0
Solve the equation for m
More Steps

Evaluate
2m+3=0
Move the constant to the right-hand side and change its sign
2m=0−3
Removing 0 doesn't change the value,so remove it from the expression
2m=−3
Divide both sides
22m=2−3
Divide the numbers
m=2−3
Use b−a=−ba=−ba to rewrite the fraction
m=−23
m=0m=−23
m=3336m=0m=−23
Solution
m1=−23,m2=0,m3=3336
Alternative Form
m1=−1.5,m2=0,m3≈1.100642
Show Solution
