Question
Simplify the expression
9x2−3x−20
Evaluate
(3x+4)(3x−5)
Apply the distributive property
3x×3x−3x×5+4×3x−4×5
Multiply the terms
More Steps

Evaluate
3x×3x
Multiply the numbers
9x×x
Multiply the terms
9x2
9x2−3x×5+4×3x−4×5
Multiply the numbers
9x2−15x+4×3x−4×5
Multiply the numbers
9x2−15x+12x−4×5
Multiply the numbers
9x2−15x+12x−20
Solution
More Steps

Evaluate
−15x+12x
Collect like terms by calculating the sum or difference of their coefficients
(−15+12)x
Add the numbers
−3x
9x2−3x−20
Show Solution

Find the roots
x1=−34,x2=35
Alternative Form
x1=−1.3˙,x2=1.6˙
Evaluate
(3x+4)(3x−5)
To find the roots of the expression,set the expression equal to 0
(3x+4)(3x−5)=0
Separate the equation into 2 possible cases
3x+4=03x−5=0
Solve the equation
More Steps

Evaluate
3x+4=0
Move the constant to the right-hand side and change its sign
3x=0−4
Removing 0 doesn't change the value,so remove it from the expression
3x=−4
Divide both sides
33x=3−4
Divide the numbers
x=3−4
Use b−a=−ba=−ba to rewrite the fraction
x=−34
x=−343x−5=0
Solve the equation
More Steps

Evaluate
3x−5=0
Move the constant to the right-hand side and change its sign
3x=0+5
Removing 0 doesn't change the value,so remove it from the expression
3x=5
Divide both sides
33x=35
Divide the numbers
x=35
x=−34x=35
Solution
x1=−34,x2=35
Alternative Form
x1=−1.3˙,x2=1.6˙
Show Solution
