Question
Solve the inequality
x≥116
Alternative Form
x∈[116,+∞)
Evaluate
43x×1−1≥21−2x
Multiply the terms
43x−1≥21−2x
Multiply both sides of the inequality by 4
(43x−1)×4≥(21−2x)×4
Multiply the terms
More Steps

Multiply the terms
(43x−1)×4
Apply the distributive property
43x×4−4
Reduce the fraction
3x−4
3x−4≥(21−2x)×4
Multiply the terms
More Steps

Multiply the terms
(21−2x)×4
Apply the distributive property
21×4−2x×4
Reduce the fraction
1×2−2x×4
Multiply the terms
2−8x
3x−4≥2−8x
Move the expression to the left side
3x−4+8x≥2
Move the expression to the right side
3x+8x≥2+4
Add and subtract
More Steps

Evaluate
3x+8x
Collect like terms by calculating the sum or difference of their coefficients
(3+8)x
Add the numbers
11x
11x≥2+4
Add and subtract
11x≥6
Divide both sides
1111x≥116
Solution
x≥116
Alternative Form
x∈[116,+∞)
Show Solution
