Question
Simplify the expression
6x5−30x4−21x3−10x2+50x+35
Evaluate
(3x2×x−5)(2x2−10x−7)
Multiply
More Steps

Evaluate
3x2×x
Multiply the terms with the same base by adding their exponents
3x2+1
Add the numbers
3x3
(3x3−5)(2x2−10x−7)
Apply the distributive property
3x3×2x2−3x3×10x−3x3×7−5×2x2−(−5×10x)−(−5×7)
Multiply the terms
More Steps

Evaluate
3x3×2x2
Multiply the numbers
6x3×x2
Multiply the terms
More Steps

Evaluate
x3×x2
Use the product rule an×am=an+m to simplify the expression
x3+2
Add the numbers
x5
6x5
6x5−3x3×10x−3x3×7−5×2x2−(−5×10x)−(−5×7)
Multiply the terms
More Steps

Evaluate
3x3×10x
Multiply the numbers
30x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
30x4
6x5−30x4−3x3×7−5×2x2−(−5×10x)−(−5×7)
Multiply the numbers
6x5−30x4−21x3−5×2x2−(−5×10x)−(−5×7)
Multiply the numbers
6x5−30x4−21x3−10x2−(−5×10x)−(−5×7)
Multiply the numbers
6x5−30x4−21x3−10x2−(−50x)−(−5×7)
Multiply the numbers
6x5−30x4−21x3−10x2−(−50x)−(−35)
Solution
6x5−30x4−21x3−10x2+50x+35
Show Solution

Find the roots
x1=25−39,x2=3345,x3=25+39
Alternative Form
x1≈−0.622499,x2≈1.185631,x3≈5.622499
Evaluate
(3x2×x−5)(2x2−10x−7)
To find the roots of the expression,set the expression equal to 0
(3x2×x−5)(2x2−10x−7)=0
Multiply
More Steps

Multiply the terms
3x2×x
Multiply the terms with the same base by adding their exponents
3x2+1
Add the numbers
3x3
(3x3−5)(2x2−10x−7)=0
Separate the equation into 2 possible cases
3x3−5=02x2−10x−7=0
Solve the equation
More Steps

Evaluate
3x3−5=0
Move the constant to the right-hand side and change its sign
3x3=0+5
Removing 0 doesn't change the value,so remove it from the expression
3x3=5
Divide both sides
33x3=35
Divide the numbers
x3=35
Take the 3-th root on both sides of the equation
3x3=335
Calculate
x=335
Simplify the root
More Steps

Evaluate
335
To take a root of a fraction,take the root of the numerator and denominator separately
3335
Multiply by the Conjugate
33×33235×332
Simplify
33×33235×39
Multiply the numbers
33×332345
Multiply the numbers
3345
x=3345
x=33452x2−10x−7=0
Solve the equation
More Steps

Evaluate
2x2−10x−7=0
Substitute a=2,b=−10 and c=−7 into the quadratic formula x=2a−b±b2−4ac
x=2×210±(−10)2−4×2(−7)
Simplify the expression
x=410±(−10)2−4×2(−7)
Simplify the expression
More Steps

Evaluate
(−10)2−4×2(−7)
Multiply
(−10)2−(−56)
Rewrite the expression
102−(−56)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
102+56
Evaluate the power
100+56
Add the numbers
156
x=410±156
Simplify the radical expression
More Steps

Evaluate
156
Write the expression as a product where the root of one of the factors can be evaluated
4×39
Write the number in exponential form with the base of 2
22×39
The root of a product is equal to the product of the roots of each factor
22×39
Reduce the index of the radical and exponent with 2
239
x=410±239
Separate the equation into 2 possible cases
x=410+239x=410−239
Simplify the expression
x=25+39x=410−239
Simplify the expression
x=25+39x=25−39
x=3345x=25+39x=25−39
Solution
x1=25−39,x2=3345,x3=25+39
Alternative Form
x1≈−0.622499,x2≈1.185631,x3≈5.622499
Show Solution
