Question
Simplify the expression
3x2−5x−27x3
Evaluate
(3x2−5x)−(9x2×3x)
Remove the parentheses
3x2−5x−(9x2×3x)
Solution
More Steps

Multiply the terms
9x2×3x
Multiply the terms
27x2×x
Multiply the terms with the same base by adding their exponents
27x2+1
Add the numbers
27x3
3x2−5x−27x3
Show Solution

Factor the expression
x(3x−5−27x2)
Evaluate
(3x2−5x)−(9x2×3x)
Remove the parentheses
3x2−5x−(9x2×3x)
Multiply
More Steps

Multiply the terms
9x2×3x
Multiply the terms
27x2×x
Multiply the terms with the same base by adding their exponents
27x2+1
Add the numbers
27x3
3x2−5x−27x3
Rewrite the expression
x×3x−x×5−x×27x2
Solution
x(3x−5−27x2)
Show Solution

Find the roots
x1=181−1859i,x2=181+1859i,x3=0
Alternative Form
x1≈0.05˙−0.42673i,x2≈0.05˙+0.42673i,x3=0
Evaluate
(3x2−5x)−(9x2×3x)
To find the roots of the expression,set the expression equal to 0
(3x2−5x)−(9x2×3x)=0
Remove the parentheses
3x2−5x−(9x2×3x)=0
Multiply
More Steps

Multiply the terms
9x2×3x
Multiply the terms
27x2×x
Multiply the terms with the same base by adding their exponents
27x2+1
Add the numbers
27x3
3x2−5x−27x3=0
Factor the expression
x(3x−5−27x2)=0
Separate the equation into 2 possible cases
x=03x−5−27x2=0
Solve the equation
More Steps

Evaluate
3x−5−27x2=0
Rewrite in standard form
−27x2+3x−5=0
Multiply both sides
27x2−3x+5=0
Substitute a=27,b=−3 and c=5 into the quadratic formula x=2a−b±b2−4ac
x=2×273±(−3)2−4×27×5
Simplify the expression
x=543±(−3)2−4×27×5
Simplify the expression
More Steps

Evaluate
(−3)2−4×27×5
Multiply the terms
(−3)2−540
Rewrite the expression
32−540
Evaluate the power
9−540
Subtract the numbers
−531
x=543±−531
Simplify the radical expression
More Steps

Evaluate
−531
Evaluate the power
531×−1
Evaluate the power
531×i
Evaluate the power
359×i
x=543±359×i
Separate the equation into 2 possible cases
x=543+359×ix=543−359×i
Simplify the expression
x=181+1859ix=543−359×i
Simplify the expression
x=181+1859ix=181−1859i
x=0x=181+1859ix=181−1859i
Solution
x1=181−1859i,x2=181+1859i,x3=0
Alternative Form
x1≈0.05˙−0.42673i,x2≈0.05˙+0.42673i,x3=0
Show Solution
