Question
Simplify the expression
x4−47x3−2
Evaluate
33x3−5x2−34x2×4×x−2
Multiply the terms
33x3−5x2−136x2×x−2
Subtract the terms
More Steps

Evaluate
3x3−5x2−136x2
Subtract the terms
More Steps

Evaluate
−5x2−136x2
Collect like terms by calculating the sum or difference of their coefficients
(−5−136)x2
Subtract the numbers
−141x2
3x3−141x2
33x3−141x2×x−2
Divide the terms
More Steps

Evaluate
33x3−141x2
Factor
33(x3−47x2)
Reduce the fraction
x3−47x2
(x3−47x2)x−2
Multiply the terms
x(x3−47x2)−2
Solution
More Steps

Evaluate
x(x3−47x2)
Apply the distributive property
x×x3−x×47x2
Multiply the terms
More Steps

Evaluate
x×x3
Use the product rule an×am=an+m to simplify the expression
x1+3
Add the numbers
x4
x4−x×47x2
Multiply the terms
More Steps

Evaluate
x×47x2
Use the commutative property to reorder the terms
47x×x2
Multiply the terms
47x3
x4−47x3
x4−47x3−2
Show Solution

Find the roots
x1≈−0.348264,x2≈47.000019
Evaluate
33x3−5x2−34x2×4×x−2
To find the roots of the expression,set the expression equal to 0
33x3−5x2−34x2×4×x−2=0
Multiply the terms
33x3−5x2−136x2×x−2=0
Subtract the terms
More Steps

Simplify
3x3−5x2−136x2
Subtract the terms
More Steps

Evaluate
−5x2−136x2
Collect like terms by calculating the sum or difference of their coefficients
(−5−136)x2
Subtract the numbers
−141x2
3x3−141x2
33x3−141x2×x−2=0
Divide the terms
More Steps

Evaluate
33x3−141x2
Factor
33(x3−47x2)
Reduce the fraction
x3−47x2
(x3−47x2)x−2=0
Multiply the terms
x(x3−47x2)−2=0
Calculate
More Steps

Evaluate
x(x3−47x2)
Apply the distributive property
x×x3−x×47x2
Multiply the terms
More Steps

Evaluate
x×x3
Use the product rule an×am=an+m to simplify the expression
x1+3
Add the numbers
x4
x4−x×47x2
Multiply the terms
More Steps

Evaluate
x×47x2
Use the commutative property to reorder the terms
47x×x2
Multiply the terms
47x3
x4−47x3
x4−47x3−2=0
Calculate
x≈47.000019x≈−0.348264
Solution
x1≈−0.348264,x2≈47.000019
Show Solution
