Question
(3x−1)(x×7)
Simplify the expression
21x2−7x
Evaluate
(3x−1)(x×7)
Remove the parentheses
(3x−1)x×7
Use the commutative property to reorder the terms
(3x−1)×7x
Multiply the terms
7x(3x−1)
Apply the distributive property
7x×3x−7x×1
Multiply the terms
More Steps

Evaluate
7x×3x
Multiply the numbers
21x×x
Multiply the terms
21x2
21x2−7x×1
Solution
21x2−7x
Show Solution

Find the roots
x1=0,x2=31
Alternative Form
x1=0,x2=0.3˙
Evaluate
(3x−1)(x×7)
To find the roots of the expression,set the expression equal to 0
(3x−1)(x×7)=0
Use the commutative property to reorder the terms
(3x−1)×7x=0
Multiply the terms
7x(3x−1)=0
Elimination the left coefficient
x(3x−1)=0
Separate the equation into 2 possible cases
x=03x−1=0
Solve the equation
More Steps

Evaluate
3x−1=0
Move the constant to the right-hand side and change its sign
3x=0+1
Removing 0 doesn't change the value,so remove it from the expression
3x=1
Divide both sides
33x=31
Divide the numbers
x=31
x=0x=31
Solution
x1=0,x2=31
Alternative Form
x1=0,x2=0.3˙
Show Solution
