Question
Simplify the expression
6x2−29x+30
Evaluate
(3x−10)(2x−3)
Apply the distributive property
3x×2x−3x×3−10×2x−(−10×3)
Multiply the terms
More Steps

Evaluate
3x×2x
Multiply the numbers
6x×x
Multiply the terms
6x2
6x2−3x×3−10×2x−(−10×3)
Multiply the numbers
6x2−9x−10×2x−(−10×3)
Multiply the numbers
6x2−9x−20x−(−10×3)
Multiply the numbers
6x2−9x−20x−(−30)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x2−9x−20x+30
Solution
More Steps

Evaluate
−9x−20x
Collect like terms by calculating the sum or difference of their coefficients
(−9−20)x
Subtract the numbers
−29x
6x2−29x+30
Show Solution

Find the roots
x1=23,x2=310
Alternative Form
x1=1.5,x2=3.3˙
Evaluate
(3x−10)(2x−3)
To find the roots of the expression,set the expression equal to 0
(3x−10)(2x−3)=0
Separate the equation into 2 possible cases
3x−10=02x−3=0
Solve the equation
More Steps

Evaluate
3x−10=0
Move the constant to the right-hand side and change its sign
3x=0+10
Removing 0 doesn't change the value,so remove it from the expression
3x=10
Divide both sides
33x=310
Divide the numbers
x=310
x=3102x−3=0
Solve the equation
More Steps

Evaluate
2x−3=0
Move the constant to the right-hand side and change its sign
2x=0+3
Removing 0 doesn't change the value,so remove it from the expression
2x=3
Divide both sides
22x=23
Divide the numbers
x=23
x=310x=23
Solution
x1=23,x2=310
Alternative Form
x1=1.5,x2=3.3˙
Show Solution
