Question
Simplify the expression
3x5−12x4
Evaluate
(3x−12)x4
Multiply the terms
x4(3x−12)
Apply the distributive property
x4×3x−x4×12
Multiply the terms
More Steps

Evaluate
x4×3x
Use the commutative property to reorder the terms
3x4×x
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
3x5
3x5−x4×12
Solution
3x5−12x4
Show Solution

Factor the expression
3x4(x−4)
Evaluate
(3x−12)x4
Multiply the terms
x4(3x−12)
Factor the expression
x4×3(x−4)
Solution
3x4(x−4)
Show Solution

Find the roots
x1=0,x2=4
Evaluate
(3x−12)(x4)
To find the roots of the expression,set the expression equal to 0
(3x−12)(x4)=0
Calculate
(3x−12)x4=0
Multiply the terms
x4(3x−12)=0
Separate the equation into 2 possible cases
x4=03x−12=0
The only way a power can be 0 is when the base equals 0
x=03x−12=0
Solve the equation
More Steps

Evaluate
3x−12=0
Move the constant to the right-hand side and change its sign
3x=0+12
Removing 0 doesn't change the value,so remove it from the expression
3x=12
Divide both sides
33x=312
Divide the numbers
x=312
Divide the numbers
More Steps

Evaluate
312
Reduce the numbers
14
Calculate
4
x=4
x=0x=4
Solution
x1=0,x2=4
Show Solution
