Question
Simplify the expression
18x3−21x2+27x
Evaluate
(3x−2)×6x2−9(x2−3x×1)
Multiply the terms
(3x−2)×6x2−9(x2−3x)
Multiply the terms
6x2(3x−2)−9(x2−3x)
Expand the expression
More Steps

Calculate
6x2(3x−2)
Apply the distributive property
6x2×3x−6x2×2
Multiply the terms
More Steps

Evaluate
6x2×3x
Multiply the numbers
18x2×x
Multiply the terms
18x3
18x3−6x2×2
Multiply the numbers
18x3−12x2
18x3−12x2−9(x2−3x)
Expand the expression
More Steps

Calculate
−9(x2−3x)
Apply the distributive property
−9x2−(−9×3x)
Multiply the numbers
−9x2−(−27x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9x2+27x
18x3−12x2−9x2+27x
Solution
More Steps

Evaluate
−12x2−9x2
Collect like terms by calculating the sum or difference of their coefficients
(−12−9)x2
Subtract the numbers
−21x2
18x3−21x2+27x
Show Solution

Factor the expression
3x(6x2−7x+9)
Evaluate
(3x−2)×6x2−9(x2−3x×1)
Multiply the terms
(3x−2)×6x2−9(x2−3x)
Multiply the terms
6x2(3x−2)−9(x2−3x)
Rewrite the expression
3x×2x(3x−2)−3x×3(x−3)
Factor out 3x from the expression
3x(2x(3x−2)−3(x−3))
Solution
3x(6x2−7x+9)
Show Solution

Find the roots
x1=127−12167i,x2=127+12167i,x3=0
Alternative Form
x1≈0.583˙−1.076904i,x2≈0.583˙+1.076904i,x3=0
Evaluate
(3x−2)(6x2)−9(x2−3x×1)
To find the roots of the expression,set the expression equal to 0
(3x−2)(6x2)−9(x2−3x×1)=0
Multiply the terms
(3x−2)×6x2−9(x2−3x×1)=0
Multiply the terms
(3x−2)×6x2−9(x2−3x)=0
Multiply the terms
6x2(3x−2)−9(x2−3x)=0
Calculate
More Steps

Evaluate
6x2(3x−2)−9(x2−3x)
Expand the expression
More Steps

Calculate
6x2(3x−2)
Apply the distributive property
6x2×3x−6x2×2
Multiply the terms
18x3−6x2×2
Multiply the numbers
18x3−12x2
18x3−12x2−9(x2−3x)
Expand the expression
More Steps

Calculate
−9(x2−3x)
Apply the distributive property
−9x2−(−9×3x)
Multiply the numbers
−9x2−(−27x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9x2+27x
18x3−12x2−9x2+27x
Subtract the terms
More Steps

Evaluate
−12x2−9x2
Collect like terms by calculating the sum or difference of their coefficients
(−12−9)x2
Subtract the numbers
−21x2
18x3−21x2+27x
18x3−21x2+27x=0
Factor the expression
3x(6x2−7x+9)=0
Divide both sides
x(6x2−7x+9)=0
Separate the equation into 2 possible cases
x=06x2−7x+9=0
Solve the equation
More Steps

Evaluate
6x2−7x+9=0
Substitute a=6,b=−7 and c=9 into the quadratic formula x=2a−b±b2−4ac
x=2×67±(−7)2−4×6×9
Simplify the expression
x=127±(−7)2−4×6×9
Simplify the expression
More Steps

Evaluate
(−7)2−4×6×9
Multiply the terms
(−7)2−216
Rewrite the expression
72−216
Evaluate the power
49−216
Subtract the numbers
−167
x=127±−167
Simplify the radical expression
More Steps

Evaluate
−167
Evaluate the power
167×−1
Evaluate the power
167×i
x=127±167×i
Separate the equation into 2 possible cases
x=127+167×ix=127−167×i
Simplify the expression
x=127+12167ix=127−167×i
Simplify the expression
x=127+12167ix=127−12167i
x=0x=127+12167ix=127−12167i
Solution
x1=127−12167i,x2=127+12167i,x3=0
Alternative Form
x1≈0.583˙−1.076904i,x2≈0.583˙+1.076904i,x3=0
Show Solution
