Question
Simplify the expression
6x5−8x4
Evaluate
(3x−4)(2x×1)x2(x×1)
Remove the parentheses
(3x−4)×2x×1×x2×x×1
Rewrite the expression
(3x−4)×2x×x2×x
Multiply the terms with the same base by adding their exponents
(3x−4)×2x1+2+1
Add the numbers
(3x−4)×2x4
Multiply the terms
2x4(3x−4)
Apply the distributive property
2x4×3x−2x4×4
Multiply the terms
More Steps

Evaluate
2x4×3x
Multiply the numbers
6x4×x
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
6x5
6x5−2x4×4
Solution
6x5−8x4
Show Solution

Find the roots
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Evaluate
(3x−4)(2x×1)(x2)(x×1)
To find the roots of the expression,set the expression equal to 0
(3x−4)(2x×1)(x2)(x×1)=0
Multiply the terms
(3x−4)×2x(x2)(x×1)=0
Calculate
(3x−4)×2x×x2(x×1)=0
Any expression multiplied by 1 remains the same
(3x−4)×2x×x2×x=0
Multiply the terms
More Steps

Multiply the terms
(3x−4)×2x×x2×x
Multiply the terms with the same base by adding their exponents
(3x−4)×2x1+2+1
Add the numbers
(3x−4)×2x4
Multiply the terms
2x4(3x−4)
2x4(3x−4)=0
Elimination the left coefficient
x4(3x−4)=0
Separate the equation into 2 possible cases
x4=03x−4=0
The only way a power can be 0 is when the base equals 0
x=03x−4=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=0x=34
Solution
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Show Solution
