Question
Simplify the expression
3x3−4x2
Evaluate
(3x−4)x2
Multiply the terms
x2(3x−4)
Apply the distributive property
x2×3x−x2×4
Multiply the terms
More Steps

Evaluate
x2×3x
Use the commutative property to reorder the terms
3x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
3x3
3x3−x2×4
Solution
3x3−4x2
Show Solution

Find the roots
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Evaluate
(3x−4)(x2)
To find the roots of the expression,set the expression equal to 0
(3x−4)(x2)=0
Calculate
(3x−4)x2=0
Multiply the terms
x2(3x−4)=0
Separate the equation into 2 possible cases
x2=03x−4=0
The only way a power can be 0 is when the base equals 0
x=03x−4=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=0x=34
Solution
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Show Solution
