Question
Simplify the expression
6x2−31x+40
Evaluate
(3x−8)(2x−5)
Apply the distributive property
3x×2x−3x×5−8×2x−(−8×5)
Multiply the terms
More Steps

Evaluate
3x×2x
Multiply the numbers
6x×x
Multiply the terms
6x2
6x2−3x×5−8×2x−(−8×5)
Multiply the numbers
6x2−15x−8×2x−(−8×5)
Multiply the numbers
6x2−15x−16x−(−8×5)
Multiply the numbers
6x2−15x−16x−(−40)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x2−15x−16x+40
Solution
More Steps

Evaluate
−15x−16x
Collect like terms by calculating the sum or difference of their coefficients
(−15−16)x
Subtract the numbers
−31x
6x2−31x+40
Show Solution

Find the roots
x1=25,x2=38
Alternative Form
x1=2.5,x2=2.6˙
Evaluate
(3x−8)(2x−5)
To find the roots of the expression,set the expression equal to 0
(3x−8)(2x−5)=0
Separate the equation into 2 possible cases
3x−8=02x−5=0
Solve the equation
More Steps

Evaluate
3x−8=0
Move the constant to the right-hand side and change its sign
3x=0+8
Removing 0 doesn't change the value,so remove it from the expression
3x=8
Divide both sides
33x=38
Divide the numbers
x=38
x=382x−5=0
Solve the equation
More Steps

Evaluate
2x−5=0
Move the constant to the right-hand side and change its sign
2x=0+5
Removing 0 doesn't change the value,so remove it from the expression
2x=5
Divide both sides
22x=25
Divide the numbers
x=25
x=38x=25
Solution
x1=25,x2=38
Alternative Form
x1=2.5,x2=2.6˙
Show Solution
