Question
Simplify the expression
19440x5
Evaluate
(3x×4)(3x×3)(3x×5)×2(21x×3x×4)
Remove the parentheses
3x×4×3x×3×3x×5×2×21x×3x×4
Rewrite the expression in exponential form
35x5×4×5×2×21×4
Multiply the terms
More Steps

Evaluate
4×5×2×21×4
Reduce the fraction
4×5×1×1×4
Multiply the terms
20×1×1×4
Any expression multiplied by 1 remains the same
20×1×4
Any expression multiplied by 1 remains the same
20×4
Multiply the numbers
80
35x5×80
Solution
More Steps

Evaluate
35×80
Evaluate the power
243×80
Multiply the numbers
19440
19440x5
Show Solution

Find the roots
x=0
Evaluate
(3x×4)(3x×3)(3x×5)×2(21x×3x×4)
To find the roots of the expression,set the expression equal to 0
(3x×4)(3x×3)(3x×5)×2(21x×3x×4)=0
Multiply the terms
12x(3x×3)(3x×5)×2(21x×3x×4)=0
Multiply the terms
12x×9x(3x×5)×2(21x×3x×4)=0
Multiply the terms
12x×9x×15x×2(21x×3x×4)=0
Multiply
More Steps

Multiply the terms
21x×3x×4
Multiply the terms
More Steps

Evaluate
21×3×4
Multiply the numbers
23×4
Reduce the numbers
3×2
Multiply the numbers
6
6x×x
Multiply the terms
6x2
12x×9x×15x×2×6x2=0
Multiply
More Steps

Multiply the terms
12x×9x×15x×2×6x2
Multiply the terms
More Steps

Evaluate
12×9×15×2×6
Multiply the terms
108×15×2×6
Multiply the terms
1620×2×6
Multiply the terms
3240×6
Multiply the numbers
19440
19440x×x×x×x2
Multiply the terms with the same base by adding their exponents
19440x1+2×x×x
Add the numbers
19440x3×x×x
Multiply the terms with the same base by adding their exponents
19440x1+3+1
Add the numbers
19440x5
19440x5=0
Rewrite the expression
x5=0
Solution
x=0
Show Solution
