Question
Simplify the expression
9z3−6z2
Evaluate
(3z−2)×3z2
Multiply the terms
3z2(3z−2)
Apply the distributive property
3z2×3z−3z2×2
Multiply the terms
More Steps

Evaluate
3z2×3z
Multiply the numbers
9z2×z
Multiply the terms
More Steps

Evaluate
z2×z
Use the product rule an×am=an+m to simplify the expression
z2+1
Add the numbers
z3
9z3
9z3−3z2×2
Solution
9z3−6z2
Show Solution

Find the roots
z1=0,z2=32
Alternative Form
z1=0,z2=0.6˙
Evaluate
(3z−2)(3z2)
To find the roots of the expression,set the expression equal to 0
(3z−2)(3z2)=0
Multiply the terms
(3z−2)×3z2=0
Multiply the terms
3z2(3z−2)=0
Elimination the left coefficient
z2(3z−2)=0
Separate the equation into 2 possible cases
z2=03z−2=0
The only way a power can be 0 is when the base equals 0
z=03z−2=0
Solve the equation
More Steps

Evaluate
3z−2=0
Move the constant to the right-hand side and change its sign
3z=0+2
Removing 0 doesn't change the value,so remove it from the expression
3z=2
Divide both sides
33z=32
Divide the numbers
z=32
z=0z=32
Solution
z1=0,z2=32
Alternative Form
z1=0,z2=0.6˙
Show Solution
