Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−615+557,x2=6−15+557
Alternative Form
x1≈−8.791529,x2≈3.791529
Evaluate
(4+2+3)x+(4+2+3x)x=100
Simplify
More Steps

Evaluate
(4+2+3)x+(4+2+3x)x
Add the numbers
9x+(4+2+3x)x
Add the numbers
9x+(6+3x)x
Multiply the terms
9x+x(6+3x)
9x+x(6+3x)=100
Expand the expression
More Steps

Evaluate
9x+x(6+3x)
Multiply the terms
More Steps

Evaluate
x(6+3x)
Apply the distributive property
x×6+x×3x
Use the commutative property to reorder the terms
6x+x×3x
Multiply the terms
6x+3x2
9x+6x+3x2
Add the terms
More Steps

Evaluate
9x+6x
Collect like terms by calculating the sum or difference of their coefficients
(9+6)x
Add the numbers
15x
15x+3x2
15x+3x2=100
Move the expression to the left side
15x+3x2−100=0
Rewrite in standard form
3x2+15x−100=0
Substitute a=3,b=15 and c=−100 into the quadratic formula x=2a−b±b2−4ac
x=2×3−15±152−4×3(−100)
Simplify the expression
x=6−15±152−4×3(−100)
Simplify the expression
More Steps

Evaluate
152−4×3(−100)
Multiply
More Steps

Multiply the terms
4×3(−100)
Rewrite the expression
−4×3×100
Multiply the terms
−1200
152−(−1200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+1200
Evaluate the power
225+1200
Add the numbers
1425
x=6−15±1425
Simplify the radical expression
More Steps

Evaluate
1425
Write the expression as a product where the root of one of the factors can be evaluated
25×57
Write the number in exponential form with the base of 5
52×57
The root of a product is equal to the product of the roots of each factor
52×57
Reduce the index of the radical and exponent with 2
557
x=6−15±557
Separate the equation into 2 possible cases
x=6−15+557x=6−15−557
Use b−a=−ba=−ba to rewrite the fraction
x=6−15+557x=−615+557
Solution
x1=−615+557,x2=6−15+557
Alternative Form
x1≈−8.791529,x2≈3.791529
Show Solution
