Question
Simplify the expression
16y−16y2
Evaluate
(4−4y)(4y×1)
Remove the parentheses
(4−4y)×4y×1
Any expression multiplied by 1 remains the same
(4−4y)×4y
Multiply the first two terms
4(4−4y)y
Multiply the terms
More Steps

Evaluate
4(4−4y)
Apply the distributive property
4×4−4×4y
Multiply the numbers
16−4×4y
Multiply the numbers
16−16y
(16−16y)y
Apply the distributive property
16y−16y×y
Solution
16y−16y2
Show Solution

Factor the expression
16y(1−y)
Evaluate
(4−4y)(4y×1)
Remove the parentheses
(4−4y)×4y×1
Multiply the terms
(4−4y)×4y
Multiply the terms
4y(4−4y)
Factor the expression
4y×4(1−y)
Solution
16y(1−y)
Show Solution

Find the roots
y1=0,y2=1
Evaluate
(4−4y)(4y×1)
To find the roots of the expression,set the expression equal to 0
(4−4y)(4y×1)=0
Multiply the terms
(4−4y)×4y=0
Multiply the terms
4y(4−4y)=0
Elimination the left coefficient
y(4−4y)=0
Separate the equation into 2 possible cases
y=04−4y=0
Solve the equation
More Steps

Evaluate
4−4y=0
Move the constant to the right-hand side and change its sign
−4y=0−4
Removing 0 doesn't change the value,so remove it from the expression
−4y=−4
Change the signs on both sides of the equation
4y=4
Divide both sides
44y=44
Divide the numbers
y=44
Divide the numbers
More Steps

Evaluate
44
Reduce the numbers
11
Calculate
1
y=1
y=0y=1
Solution
y1=0,y2=1
Show Solution
