Question
Simplify the expression
67
Alternative Form
161
Alternative Form
1.16˙
Evaluate
(42×42k×150kk)×175k
Remove the parentheses
42×42k×150kk×175k
Reduce the fraction
More Steps

Evaluate
42k×150kk
Multiply
More Steps

Evaluate
42k×150k
Multiply the terms
6300k×k
Multiply the terms
6300k2
6300k2k
Reduce the fraction
More Steps

Calculate
k2k
Use the product rule aman=an−m to simplify the expression
k2−11
Subtract the terms
k11
Simplify
k1
6300k1
42×6300k1×175k
Multiply the terms
7350×6300k1×k
Multiply the terms
More Steps

Multiply the terms
7350×6300k1
Cancel out the common factor 1050
7×6k1
Multiply the terms
6k7
6k7×k
Cancel out the common factor k
67×1
Solution
67
Alternative Form
161
Alternative Form
1.16˙
Show Solution

Find the excluded values
k=0
Evaluate
(42×42k×150kk)×175k
To find the excluded values,set the denominators equal to 0
k×k=0
Multiply the terms
k2=0
Solution
k=0
Show Solution

Find the roots
k∈∅
Evaluate
(42×42k×150kk)×175k
To find the roots of the expression,set the expression equal to 0
(42×42k×150kk)×175k=0
Find the domain
More Steps

Evaluate
k×k=0
Multiply the terms
k2=0
The only way a power can not be 0 is when the base not equals 0
k=0
(42×42k×150kk)×175k=0,k=0
Calculate
(42×42k×150kk)×175k=0
Multiply
More Steps

Multiply the terms
42k×150k
Multiply the terms
6300k×k
Multiply the terms
6300k2
(42×6300k2k)×175k=0
Divide the terms
More Steps

Evaluate
6300k2k
Use the product rule aman=an−m to simplify the expression
6300k2−11
Reduce the fraction
6300k1
(42×6300k1)×175k=0
Multiply the terms
More Steps

Multiply the terms
42×6300k1
Cancel out the common factor 42
1×150k1
Multiply the terms
150k1
150k1×175k=0
Multiply the terms
More Steps

Multiply the terms
150k1×175k
Multiply the terms
More Steps

Multiply the terms
150k1×175
Cancel out the common factor 25
6k1×7
Multiply the terms
6k7
6k7×k
Cancel out the common factor k
67×1
Multiply the terms
67
67=0
Multiply both sides of the equation by LCD
67×6=0×6
Simplify the equation
7=0×6
Any expression multiplied by 0 equals 0
7=0
Solution
k∈∅
Show Solution
