Question
Simplify the expression
8a4−16a3
Evaluate
4a3(2a−4)
Apply the distributive property
4a3×2a−4a3×4
Multiply the terms
More Steps

Evaluate
4a3×2a
Multiply the numbers
8a3×a
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
8a4
8a4−4a3×4
Solution
8a4−16a3
Show Solution

Factor the expression
8a3(a−2)
Evaluate
4a3(2a−4)
Factor the expression
4a3×2(a−2)
Solution
8a3(a−2)
Show Solution

Find the roots
a1=0,a2=2
Evaluate
(4a3)(2a−4)
To find the roots of the expression,set the expression equal to 0
(4a3)(2a−4)=0
Multiply the terms
4a3(2a−4)=0
Elimination the left coefficient
a3(2a−4)=0
Separate the equation into 2 possible cases
a3=02a−4=0
The only way a power can be 0 is when the base equals 0
a=02a−4=0
Solve the equation
More Steps

Evaluate
2a−4=0
Move the constant to the right-hand side and change its sign
2a=0+4
Removing 0 doesn't change the value,so remove it from the expression
2a=4
Divide both sides
22a=24
Divide the numbers
a=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
a=2
a=0a=2
Solution
a1=0,a2=2
Show Solution
