Question
Simplify the expression
−36d2+26d+42
Evaluate
(4d−6)(−9d−7)
Apply the distributive property
4d(−9d)−4d×7−6(−9d)−(−6×7)
Multiply the terms
More Steps

Evaluate
4d(−9d)
Multiply the numbers
More Steps

Evaluate
4(−9)
Multiplying or dividing an odd number of negative terms equals a negative
−4×9
Multiply the numbers
−36
−36d×d
Multiply the terms
−36d2
−36d2−4d×7−6(−9d)−(−6×7)
Multiply the numbers
−36d2−28d−6(−9d)−(−6×7)
Multiply the numbers
More Steps

Evaluate
−6(−9)
Multiplying or dividing an even number of negative terms equals a positive
6×9
Multiply the numbers
54
−36d2−28d+54d−(−6×7)
Multiply the numbers
−36d2−28d+54d−(−42)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36d2−28d+54d+42
Solution
More Steps

Evaluate
−28d+54d
Collect like terms by calculating the sum or difference of their coefficients
(−28+54)d
Add the numbers
26d
−36d2+26d+42
Show Solution

Factor the expression
−2(2d−3)(9d+7)
Evaluate
(4d−6)(−9d−7)
Factor the expression
2(2d−3)(−9d−7)
Factor the expression
2(2d−3)(−1)(9d+7)
Solution
−2(2d−3)(9d+7)
Show Solution

Find the roots
d1=−97,d2=23
Alternative Form
d1=−0.7˙,d2=1.5
Evaluate
(4d−6)(−9d−7)
To find the roots of the expression,set the expression equal to 0
(4d−6)(−9d−7)=0
Separate the equation into 2 possible cases
4d−6=0−9d−7=0
Solve the equation
More Steps

Evaluate
4d−6=0
Move the constant to the right-hand side and change its sign
4d=0+6
Removing 0 doesn't change the value,so remove it from the expression
4d=6
Divide both sides
44d=46
Divide the numbers
d=46
Cancel out the common factor 2
d=23
d=23−9d−7=0
Solve the equation
More Steps

Evaluate
−9d−7=0
Move the constant to the right-hand side and change its sign
−9d=0+7
Removing 0 doesn't change the value,so remove it from the expression
−9d=7
Change the signs on both sides of the equation
9d=−7
Divide both sides
99d=9−7
Divide the numbers
d=9−7
Use b−a=−ba=−ba to rewrite the fraction
d=−97
d=23d=−97
Solution
d1=−97,d2=23
Alternative Form
d1=−0.7˙,d2=1.5
Show Solution
