Question
Simplify the expression
−16k3+12k2+4
Evaluate
(4k−4)(−4k2−k−1)
Apply the distributive property
4k(−4k2)−4k×k−4k×1−4(−4k2)−(−4k)−(−4×1)
Multiply the terms
More Steps

Evaluate
4k(−4k2)
Multiply the numbers
More Steps

Evaluate
4(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−4×4
Multiply the numbers
−16
−16k×k2
Multiply the terms
More Steps

Evaluate
k×k2
Use the product rule an×am=an+m to simplify the expression
k1+2
Add the numbers
k3
−16k3
−16k3−4k×k−4k×1−4(−4k2)−(−4k)−(−4×1)
Multiply the terms
−16k3−4k2−4k×1−4(−4k2)−(−4k)−(−4×1)
Any expression multiplied by 1 remains the same
−16k3−4k2−4k−4(−4k2)−(−4k)−(−4×1)
Multiply the numbers
More Steps

Evaluate
−4(−4)
Multiplying or dividing an even number of negative terms equals a positive
4×4
Multiply the numbers
16
−16k3−4k2−4k+16k2−(−4k)−(−4×1)
Any expression multiplied by 1 remains the same
−16k3−4k2−4k+16k2−(−4k)−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−16k3−4k2−4k+16k2+4k+4
Add the terms
More Steps

Evaluate
−4k2+16k2
Collect like terms by calculating the sum or difference of their coefficients
(−4+16)k2
Add the numbers
12k2
−16k3+12k2−4k+4k+4
The sum of two opposites equals 0
More Steps

Evaluate
−4k+4k
Collect like terms
(−4+4)k
Add the coefficients
0×k
Calculate
0
−16k3+12k2+0+4
Solution
−16k3+12k2+4
Show Solution

Factor the expression
−4(k−1)(4k2+k+1)
Evaluate
(4k−4)(−4k2−k−1)
Factor the expression
4(k−1)(−4k2−k−1)
Factor the expression
4(k−1)(−1)(4k2+k+1)
Solution
−4(k−1)(4k2+k+1)
Show Solution

Find the roots
k1=−81−815i,k2=−81+815i,k3=1
Alternative Form
k1≈−0.125−0.484123i,k2≈−0.125+0.484123i,k3=1
Evaluate
(4k−4)(−4k2−k−1)
To find the roots of the expression,set the expression equal to 0
(4k−4)(−4k2−k−1)=0
Separate the equation into 2 possible cases
4k−4=0−4k2−k−1=0
Solve the equation
More Steps

Evaluate
4k−4=0
Move the constant to the right-hand side and change its sign
4k=0+4
Removing 0 doesn't change the value,so remove it from the expression
4k=4
Divide both sides
44k=44
Divide the numbers
k=44
Divide the numbers
More Steps

Evaluate
44
Reduce the numbers
11
Calculate
1
k=1
k=1−4k2−k−1=0
Solve the equation
More Steps

Evaluate
−4k2−k−1=0
Multiply both sides
4k2+k+1=0
Substitute a=4,b=1 and c=1 into the quadratic formula k=2a−b±b2−4ac
k=2×4−1±12−4×4
Simplify the expression
k=8−1±12−4×4
Simplify the expression
More Steps

Evaluate
12−4×4
1 raised to any power equals to 1
1−4×4
Multiply the numbers
1−16
Subtract the numbers
−15
k=8−1±−15
Simplify the radical expression
More Steps

Evaluate
−15
Evaluate the power
15×−1
Evaluate the power
15×i
k=8−1±15×i
Separate the equation into 2 possible cases
k=8−1+15×ik=8−1−15×i
Simplify the expression
k=−81+815ik=8−1−15×i
Simplify the expression
k=−81+815ik=−81−815i
k=1k=−81+815ik=−81−815i
Solution
k1=−81−815i,k2=−81+815i,k3=1
Alternative Form
k1≈−0.125−0.484123i,k2≈−0.125+0.484123i,k3=1
Show Solution
