Question
Simplify the expression
8q3−2q2
Evaluate
(4q−1)×2q2
Multiply the terms
2q2(4q−1)
Apply the distributive property
2q2×4q−2q2×1
Multiply the terms
More Steps

Evaluate
2q2×4q
Multiply the numbers
8q2×q
Multiply the terms
More Steps

Evaluate
q2×q
Use the product rule an×am=an+m to simplify the expression
q2+1
Add the numbers
q3
8q3
8q3−2q2×1
Solution
8q3−2q2
Show Solution

Find the roots
q1=0,q2=41
Alternative Form
q1=0,q2=0.25
Evaluate
(4q−1)(2q2)
To find the roots of the expression,set the expression equal to 0
(4q−1)(2q2)=0
Multiply the terms
(4q−1)×2q2=0
Multiply the terms
2q2(4q−1)=0
Elimination the left coefficient
q2(4q−1)=0
Separate the equation into 2 possible cases
q2=04q−1=0
The only way a power can be 0 is when the base equals 0
q=04q−1=0
Solve the equation
More Steps

Evaluate
4q−1=0
Move the constant to the right-hand side and change its sign
4q=0+1
Removing 0 doesn't change the value,so remove it from the expression
4q=1
Divide both sides
44q=41
Divide the numbers
q=41
q=0q=41
Solution
q1=0,q2=41
Alternative Form
q1=0,q2=0.25
Show Solution
