Question
Simplify the expression
12x2−49x+44
Evaluate
(4x−11)(3x−4)
Apply the distributive property
4x×3x−4x×4−11×3x−(−11×4)
Multiply the terms
More Steps

Evaluate
4x×3x
Multiply the numbers
12x×x
Multiply the terms
12x2
12x2−4x×4−11×3x−(−11×4)
Multiply the numbers
12x2−16x−11×3x−(−11×4)
Multiply the numbers
12x2−16x−33x−(−11×4)
Multiply the numbers
12x2−16x−33x−(−44)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
12x2−16x−33x+44
Solution
More Steps

Evaluate
−16x−33x
Collect like terms by calculating the sum or difference of their coefficients
(−16−33)x
Subtract the numbers
−49x
12x2−49x+44
Show Solution

Find the roots
x1=34,x2=411
Alternative Form
x1=1.3˙,x2=2.75
Evaluate
(4x−11)(3x−4)
To find the roots of the expression,set the expression equal to 0
(4x−11)(3x−4)=0
Separate the equation into 2 possible cases
4x−11=03x−4=0
Solve the equation
More Steps

Evaluate
4x−11=0
Move the constant to the right-hand side and change its sign
4x=0+11
Removing 0 doesn't change the value,so remove it from the expression
4x=11
Divide both sides
44x=411
Divide the numbers
x=411
x=4113x−4=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=411x=34
Solution
x1=34,x2=411
Alternative Form
x1=1.3˙,x2=2.75
Show Solution
