Question
Simplify the expression
256x3−704x2+612x−162
Evaluate
(4x−2)(8x−9)(8x−9)
Multiply the terms
(4x−2)(8x−9)2
Expand the expression
More Steps

Evaluate
(8x−9)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(8x)2−2×8x×9+92
Calculate
64x2−144x+81
(4x−2)(64x2−144x+81)
Apply the distributive property
4x×64x2−4x×144x+4x×81−2×64x2−(−2×144x)−2×81
Multiply the terms
More Steps

Evaluate
4x×64x2
Multiply the numbers
256x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
256x3
256x3−4x×144x+4x×81−2×64x2−(−2×144x)−2×81
Multiply the terms
More Steps

Evaluate
4x×144x
Multiply the numbers
576x×x
Multiply the terms
576x2
256x3−576x2+4x×81−2×64x2−(−2×144x)−2×81
Multiply the numbers
256x3−576x2+324x−2×64x2−(−2×144x)−2×81
Multiply the numbers
256x3−576x2+324x−128x2−(−2×144x)−2×81
Multiply the numbers
256x3−576x2+324x−128x2−(−288x)−2×81
Multiply the numbers
256x3−576x2+324x−128x2−(−288x)−162
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
256x3−576x2+324x−128x2+288x−162
Subtract the terms
More Steps

Evaluate
−576x2−128x2
Collect like terms by calculating the sum or difference of their coefficients
(−576−128)x2
Subtract the numbers
−704x2
256x3−704x2+324x+288x−162
Solution
More Steps

Evaluate
324x+288x
Collect like terms by calculating the sum or difference of their coefficients
(324+288)x
Add the numbers
612x
256x3−704x2+612x−162
Show Solution

Factor the expression
2(8x−9)2(2x−1)
Evaluate
(4x−2)(8x−9)(8x−9)
Multiply the terms
(8x−9)2(4x−2)
Factor the expression
(8x−9)2×2(2x−1)
Solution
2(8x−9)2(2x−1)
Show Solution

Find the roots
x1=21,x2=89
Alternative Form
x1=0.5,x2=1.125
Evaluate
(4x−2)(8x−9)(8x−9)
To find the roots of the expression,set the expression equal to 0
(4x−2)(8x−9)(8x−9)=0
Multiply the terms
(4x−2)(8x−9)2=0
Separate the equation into 2 possible cases
4x−2=0(8x−9)2=0
Solve the equation
More Steps

Evaluate
4x−2=0
Move the constant to the right-hand side and change its sign
4x=0+2
Removing 0 doesn't change the value,so remove it from the expression
4x=2
Divide both sides
44x=42
Divide the numbers
x=42
Cancel out the common factor 2
x=21
x=21(8x−9)2=0
Solve the equation
More Steps

Evaluate
(8x−9)2=0
The only way a power can be 0 is when the base equals 0
8x−9=0
Move the constant to the right-hand side and change its sign
8x=0+9
Removing 0 doesn't change the value,so remove it from the expression
8x=9
Divide both sides
88x=89
Divide the numbers
x=89
x=21x=89
Solution
x1=21,x2=89
Alternative Form
x1=0.5,x2=1.125
Show Solution
