Question
Simplify the expression
3x212y−4x2
Evaluate
((4×3x−2)÷3y−1)−34
Rewrite the expression
More Steps

Evaluate
3x−2
Express with a positive exponent using a−n=an1
3x21
Simplify
3x21
((4×3x21)÷3y−1)−34
Multiply the terms
(3x24÷3y−1)−34
Multiply by the reciprocal
(3x24×y−13)−34
Rewrite the expression
More Steps

Evaluate
y−13
Express with a positive exponent using a−n=an1
y13
Simplify
3y
(3x24×3y)−34
Multiply the terms
More Steps

Multiply the terms
3x24×3y
Cancel out the common factor 3
x24×y
Multiply the terms
x24y
x24y−34
Reduce fractions to a common denominator
x2×34y×3−3x24x2
Use the commutative property to reorder the terms
3x24y×3−3x24x2
Write all numerators above the common denominator
3x24y×3−4x2
Solution
3x212y−4x2
Show Solution
