Question
Simplify the expression
4x2−3x−2x3+5
Evaluate
(4x2−3x×1)−(2x2×x−5)
Multiply the terms
(4x2−3x)−(2x2×x−5)
Remove the parentheses
4x2−3x−(2x2×x−5)
Multiply
More Steps

Multiply the terms
2x2×x
Multiply the terms with the same base by adding their exponents
2x2+1
Add the numbers
2x3
4x2−3x−(2x3−5)
Solution
4x2−3x−2x3+5
Show Solution

Find the roots
x≈1.902321
Evaluate
(4x2−3x×1)−(2x2×x−5)
To find the roots of the expression,set the expression equal to 0
(4x2−3x×1)−(2x2×x−5)=0
Multiply the terms
(4x2−3x)−(2x2×x−5)=0
Remove the parentheses
4x2−3x−(2x2×x−5)=0
Multiply
More Steps

Multiply the terms
2x2×x
Multiply the terms with the same base by adding their exponents
2x2+1
Add the numbers
2x3
4x2−3x−(2x3−5)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4x2−3x−2x3+5=0
Solution
x≈1.902321
Show Solution
