Question
Simplify the expression
55296x12−82944x9
Evaluate
(4x3−6)(16x6×24x3×36)
Remove the parentheses
(4x3−6)×16x6×24x3×36
Multiply the terms
More Steps

Evaluate
16×24×36
Multiply the terms
384×36
Multiply the numbers
13824
(4x3−6)×13824x6×x3
Multiply the terms with the same base by adding their exponents
(4x3−6)×13824x6+3
Add the numbers
(4x3−6)×13824x9
Multiply the terms
13824x9(4x3−6)
Apply the distributive property
13824x9×4x3−13824x9×6
Multiply the terms
More Steps

Evaluate
13824x9×4x3
Multiply the numbers
55296x9×x3
Multiply the terms
More Steps

Evaluate
x9×x3
Use the product rule an×am=an+m to simplify the expression
x9+3
Add the numbers
x12
55296x12
55296x12−13824x9×6
Solution
55296x12−82944x9
Show Solution

Factor the expression
27648x9(2x3−3)
Evaluate
(4x3−6)(16x6×24x3×36)
Remove the parentheses
(4x3−6)×16x6×24x3×36
Multiply
More Steps

Multiply the terms
16x6×24x3×36
Multiply the terms
More Steps

Evaluate
16×24×36
Multiply the terms
384×36
Multiply the numbers
13824
13824x6×x3
Multiply the terms with the same base by adding their exponents
13824x6+3
Add the numbers
13824x9
(4x3−6)×13824x9
Multiply the terms
13824x9(4x3−6)
Factor the expression
13824x9×2(2x3−3)
Solution
27648x9(2x3−3)
Show Solution

Find the roots
x1=0,x2=2312
Alternative Form
x1=0,x2≈1.144714
Evaluate
(4x3−6)(16x6×24x3×36)
To find the roots of the expression,set the expression equal to 0
(4x3−6)(16x6×24x3×36)=0
Multiply
More Steps

Multiply the terms
16x6×24x3×36
Multiply the terms
More Steps

Evaluate
16×24×36
Multiply the terms
384×36
Multiply the numbers
13824
13824x6×x3
Multiply the terms with the same base by adding their exponents
13824x6+3
Add the numbers
13824x9
(4x3−6)×13824x9=0
Multiply the terms
13824x9(4x3−6)=0
Elimination the left coefficient
x9(4x3−6)=0
Separate the equation into 2 possible cases
x9=04x3−6=0
The only way a power can be 0 is when the base equals 0
x=04x3−6=0
Solve the equation
More Steps

Evaluate
4x3−6=0
Move the constant to the right-hand side and change its sign
4x3=0+6
Removing 0 doesn't change the value,so remove it from the expression
4x3=6
Divide both sides
44x3=46
Divide the numbers
x3=46
Cancel out the common factor 2
x3=23
Take the 3-th root on both sides of the equation
3x3=323
Calculate
x=323
Simplify the root
More Steps

Evaluate
323
To take a root of a fraction,take the root of the numerator and denominator separately
3233
Multiply by the Conjugate
32×32233×322
Simplify
32×32233×34
Multiply the numbers
32×322312
Multiply the numbers
2312
x=2312
x=0x=2312
Solution
x1=0,x2=2312
Alternative Form
x1=0,x2≈1.144714
Show Solution
