Question
Solve the equation
x=−1615
Alternative Form
x=−0.9375
Evaluate
(4x−1)−6(6x−1)=35
Remove the parentheses
4x−1−6(6x−1)=35
Move the expression to the left side
4x−1−6(6x−1)−35=0
Subtract the numbers
4x−36−6(6x−1)=0
Calculate
More Steps

Evaluate
4x−36−6(6x−1)
Expand the expression
More Steps

Calculate
−6(6x−1)
Apply the distributive property
−6×6x−(−6×1)
Multiply the numbers
−36x−(−6×1)
Any expression multiplied by 1 remains the same
−36x−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36x+6
4x−36−36x+6
Subtract the terms
More Steps

Evaluate
4x−36x
Collect like terms by calculating the sum or difference of their coefficients
(4−36)x
Subtract the numbers
−32x
−32x−36+6
Add the numbers
−32x−30
−32x−30=0
Move the constant to the right-hand side and change its sign
−32x=0+30
Removing 0 doesn't change the value,so remove it from the expression
−32x=30
Change the signs on both sides of the equation
32x=−30
Divide both sides
3232x=32−30
Divide the numbers
x=32−30
Solution
More Steps

Evaluate
32−30
Cancel out the common factor 2
16−15
Use b−a=−ba=−ba to rewrite the fraction
−1615
x=−1615
Alternative Form
x=−0.9375
Show Solution

Rewrite the equation
16x=−15
Evaluate
(4x−1)−6(6x−1)=35
Evaluate
More Steps

Evaluate
(4x−1)−6(6x−1)
Remove the parentheses
4x−1−6(6x−1)
Expand the expression
More Steps

Calculate
−6(6x−1)
Apply the distributive property
−6×6x−(−6×1)
Multiply the numbers
−36x−(−6×1)
Any expression multiplied by 1 remains the same
−36x−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36x+6
4x−1−36x+6
Subtract the terms
More Steps

Evaluate
4x−36x
Collect like terms by calculating the sum or difference of their coefficients
(4−36)x
Subtract the numbers
−32x
−32x−1+6
Add the numbers
−32x+5
−32x+5=35
Move the constant to the right side
−32x=30
Multiply both sides
32x=−30
Solution
16x=−15
Show Solution
