Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=2621−323,x2=2621+323
Alternative Form
x1≈0.254327,x2≈1.361057
Evaluate
(4x−1)×3(3−2x)×3=2x2×3
Simplify
(4x−1)×3(3−2x)=2x2
Multiply the first two terms
3(4x−1)(3−2x)=2x2
Expand the expression
More Steps

Evaluate
3(4x−1)(3−2x)
Multiply the terms
More Steps

Evaluate
3(4x−1)
Apply the distributive property
3×4x−3×1
Multiply the numbers
12x−3×1
Any expression multiplied by 1 remains the same
12x−3
(12x−3)(3−2x)
Apply the distributive property
12x×3−12x×2x−3×3−(−3×2x)
Multiply the numbers
36x−12x×2x−3×3−(−3×2x)
Multiply the terms
More Steps

Evaluate
12x×2x
Multiply the numbers
24x×x
Multiply the terms
24x2
36x−24x2−3×3−(−3×2x)
Multiply the numbers
36x−24x2−9−(−3×2x)
Multiply the numbers
36x−24x2−9−(−6x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36x−24x2−9+6x
Add the terms
More Steps

Evaluate
36x+6x
Collect like terms by calculating the sum or difference of their coefficients
(36+6)x
Add the numbers
42x
42x−24x2−9
42x−24x2−9=2x2
Move the expression to the left side
42x−26x2−9=0
Rewrite in standard form
−26x2+42x−9=0
Multiply both sides
26x2−42x+9=0
Substitute a=26,b=−42 and c=9 into the quadratic formula x=2a−b±b2−4ac
x=2×2642±(−42)2−4×26×9
Simplify the expression
x=5242±(−42)2−4×26×9
Simplify the expression
More Steps

Evaluate
(−42)2−4×26×9
Multiply the terms
More Steps

Multiply the terms
4×26×9
Multiply the terms
104×9
Multiply the numbers
936
(−42)2−936
Rewrite the expression
422−936
Evaluate the power
1764−936
Subtract the numbers
828
x=5242±828
Simplify the radical expression
More Steps

Evaluate
828
Write the expression as a product where the root of one of the factors can be evaluated
36×23
Write the number in exponential form with the base of 6
62×23
The root of a product is equal to the product of the roots of each factor
62×23
Reduce the index of the radical and exponent with 2
623
x=5242±623
Separate the equation into 2 possible cases
x=5242+623x=5242−623
Simplify the expression
More Steps

Evaluate
x=5242+623
Divide the terms
More Steps

Evaluate
5242+623
Rewrite the expression
522(21+323)
Cancel out the common factor 2
2621+323
x=2621+323
x=2621+323x=5242−623
Simplify the expression
More Steps

Evaluate
x=5242−623
Divide the terms
More Steps

Evaluate
5242−623
Rewrite the expression
522(21−323)
Cancel out the common factor 2
2621−323
x=2621−323
x=2621+323x=2621−323
Solution
x1=2621−323,x2=2621+323
Alternative Form
x1≈0.254327,x2≈1.361057
Show Solution
