Question
Simplify the expression
60x4−28x−45x3+21
Evaluate
(4x−3)(3x2×5x−7)
Multiply
More Steps

Evaluate
3x2×5x
Multiply the terms
15x2×x
Multiply the terms with the same base by adding their exponents
15x2+1
Add the numbers
15x3
(4x−3)(15x3−7)
Apply the distributive property
4x×15x3−4x×7−3×15x3−(−3×7)
Multiply the terms
More Steps

Evaluate
4x×15x3
Multiply the numbers
60x×x3
Multiply the terms
More Steps

Evaluate
x×x3
Use the product rule an×am=an+m to simplify the expression
x1+3
Add the numbers
x4
60x4
60x4−4x×7−3×15x3−(−3×7)
Multiply the numbers
60x4−28x−3×15x3−(−3×7)
Multiply the numbers
60x4−28x−45x3−(−3×7)
Multiply the numbers
60x4−28x−45x3−(−21)
Solution
60x4−28x−45x3+21
Show Solution

Find the roots
x1=43,x2=1531575
Alternative Form
x1=0.75,x2≈0.775656
Evaluate
(4x−3)(3x2×5x−7)
To find the roots of the expression,set the expression equal to 0
(4x−3)(3x2×5x−7)=0
Multiply
More Steps

Multiply the terms
3x2×5x
Multiply the terms
15x2×x
Multiply the terms with the same base by adding their exponents
15x2+1
Add the numbers
15x3
(4x−3)(15x3−7)=0
Separate the equation into 2 possible cases
4x−3=015x3−7=0
Solve the equation
More Steps

Evaluate
4x−3=0
Move the constant to the right-hand side and change its sign
4x=0+3
Removing 0 doesn't change the value,so remove it from the expression
4x=3
Divide both sides
44x=43
Divide the numbers
x=43
x=4315x3−7=0
Solve the equation
More Steps

Evaluate
15x3−7=0
Move the constant to the right-hand side and change its sign
15x3=0+7
Removing 0 doesn't change the value,so remove it from the expression
15x3=7
Divide both sides
1515x3=157
Divide the numbers
x3=157
Take the 3-th root on both sides of the equation
3x3=3157
Calculate
x=3157
Simplify the root
More Steps

Evaluate
3157
To take a root of a fraction,take the root of the numerator and denominator separately
31537
Multiply by the Conjugate
315×315237×3152
Simplify
315×315237×3225
Multiply the numbers
315×315231575
Multiply the numbers
1531575
x=1531575
x=43x=1531575
Solution
x1=43,x2=1531575
Alternative Form
x1=0.75,x2≈0.775656
Show Solution
