Question
Simplify the expression
129600y3−162000y2
Evaluate
(4y−5)(16y2×2025)
Remove the parentheses
(4y−5)×16y2×2025
Multiply the terms
(4y−5)×32400y2
Multiply the terms
32400y2(4y−5)
Apply the distributive property
32400y2×4y−32400y2×5
Multiply the terms
More Steps

Evaluate
32400y2×4y
Multiply the numbers
129600y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
129600y3
129600y3−32400y2×5
Solution
129600y3−162000y2
Show Solution

Find the roots
y1=0,y2=45
Alternative Form
y1=0,y2=1.25
Evaluate
(4y−5)(16y2×2025)
To find the roots of the expression,set the expression equal to 0
(4y−5)(16y2×2025)=0
Multiply the terms
(4y−5)×32400y2=0
Multiply the terms
32400y2(4y−5)=0
Elimination the left coefficient
y2(4y−5)=0
Separate the equation into 2 possible cases
y2=04y−5=0
The only way a power can be 0 is when the base equals 0
y=04y−5=0
Solve the equation
More Steps

Evaluate
4y−5=0
Move the constant to the right-hand side and change its sign
4y=0+5
Removing 0 doesn't change the value,so remove it from the expression
4y=5
Divide both sides
44y=45
Divide the numbers
y=45
y=0y=45
Solution
y1=0,y2=45
Alternative Form
y1=0,y2=1.25
Show Solution
