Question
Simplify the expression
x6−2x515x4−50x+45x3−150
Evaluate
(x−2)x55(x2−9)÷x2×3x−10x−3
Multiply
More Steps

Multiply the terms
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
(x−2)x55(x2−9)÷3x3−10x−3
Multiply the terms
x5(x−2)5(x2−9)÷3x3−10x−3
Multiply by the reciprocal
x5(x−2)5(x2−9)×x−33x3−10
Rewrite the expression
x5(x−2)5(x−3)(x+3)×x−33x3−10
Cancel out the common factor x−3
x5(x−2)5(x+3)×(3x3−10)
Multiply the terms
x5(x−2)5(x+3)(3x3−10)
Calculate
More Steps

Evaluate
5(x+3)(3x3−10)
Multiply the terms
More Steps

Evaluate
5(x+3)
Apply the distributive property
5x+5×3
Multiply the numbers
5x+15
(5x+15)(3x3−10)
Apply the distributive property
5x×3x3−5x×10+15×3x3−15×10
Multiply the terms
More Steps

Evaluate
5x×3x3
Multiply the numbers
15x×x3
Multiply the terms
15x4
15x4−5x×10+15×3x3−15×10
Multiply the numbers
15x4−50x+15×3x3−15×10
Multiply the numbers
15x4−50x+45x3−15×10
Multiply the numbers
15x4−50x+45x3−150
x5(x−2)15x4−50x+45x3−150
Solution
More Steps

Evaluate
x5(x−2)
Apply the distributive property
x5×x−x5×2
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
x6−x5×2
Use the commutative property to reorder the terms
x6−2x5
x6−2x515x4−50x+45x3−150
Show Solution

Find the excluded values
x=0,x=2,x=3390,x=3
Evaluate
(x−2)(x5)5(x2−9)÷x2×3x−10x−3
To find the excluded values,set the denominators equal to 0
(x−2)(x5)=0x2×3x−10=0x2×3x−10x−3=0
Solve the equations
More Steps

Evaluate
(x−2)x5=0
Multiply the terms
x5(x−2)=0
Separate the equation into 2 possible cases
x5=0x−2=0
The only way a power can be 0 is when the base equals 0
x=0x−2=0
Solve the equation
More Steps

Evaluate
x−2=0
Move the constant to the right-hand side and change its sign
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=0x=2
x=0x=2x2×3x−10=0x2×3x−10x−3=0
Solve the equations
More Steps

Evaluate
x2×3x−10=0
Multiply
More Steps

Evaluate
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
3x3−10=0
Move the constant to the right-hand side and change its sign
3x3=0+10
Removing 0 doesn't change the value,so remove it from the expression
3x3=10
Divide both sides
33x3=310
Divide the numbers
x3=310
Take the 3-th root on both sides of the equation
3x3=3310
Calculate
x=3310
Simplify the root
More Steps

Evaluate
3310
To take a root of a fraction,take the root of the numerator and denominator separately
33310
Multiply by the Conjugate
33×332310×332
Simplify
33×332310×39
Multiply the numbers
33×332390
Multiply the numbers
3390
x=3390
x=0x=2x=3390x2×3x−10x−3=0
Solve the equations
More Steps

Evaluate
x2×3x−10x−3=0
Multiply
More Steps

Evaluate
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
3x3−10x−3=0
Cross multiply
x−3=(3x3−10)×0
Simplify the equation
x−3=0
Move the constant to the right side
x=0+3
Removing 0 doesn't change the value,so remove it from the expression
x=3
x=0x=2x=3390x=3
Solution
x=0,x=2,x=3390,x=3
Show Solution

Find the roots
x=−3
Evaluate
(x−2)(x5)5(x2−9)÷x2×3x−10x−3
To find the roots of the expression,set the expression equal to 0
(x−2)(x5)5(x2−9)÷x2×3x−10x−3=0
Find the domain
More Steps

Evaluate
⎩⎨⎧(x−2)x5=0x2×3x−10=0x2×3x−10x−3=0(x−2)(x5)=0
Calculate
More Steps

Evaluate
(x−2)x5=0
Multiply the terms
x5(x−2)=0
Apply the zero product property
{x5=0x−2=0
The only way a power can not be 0 is when the base not equals 0
{x=0x−2=0
Solve the inequality
{x=0x=2
Find the intersection
x∈(−∞,0)∪(0,2)∪(2,+∞)
⎩⎨⎧x∈(−∞,0)∪(0,2)∪(2,+∞)x2×3x−10=0x2×3x−10x−3=0(x−2)(x5)=0
Calculate
More Steps

Evaluate
x2×3x−10=0
Multiply
3x3−10=0
Move the constant to the right side
3x3=10
Divide both sides
33x3=310
Divide the numbers
x3=310
Take the 3-th root on both sides of the equation
3x3=3310
Calculate
x=3310
Simplify the root
x=3390
⎩⎨⎧x∈(−∞,0)∪(0,2)∪(2,+∞)x=3390x2×3x−10x−3=0(x−2)(x5)=0
Calculate
More Steps

Evaluate
x2×3x−10x−3=0
Multiply
3x3−10x−3=0
Multiply both sides
3x3−10x−3×(3x3−10)=0×(3x3−10)
Evaluate
x−3=0×(3x3−10)
Multiply both sides
x−3=0
Move the constant to the right side
x=0+3
Removing 0 doesn't change the value,so remove it from the expression
x=3
⎩⎨⎧x∈(−∞,0)∪(0,2)∪(2,+∞)x=3390x=3(x−2)(x5)=0
Calculate
More Steps

Evaluate
(x−2)x5=0
Multiply the terms
x5(x−2)=0
Apply the zero product property
{x5=0x−2=0
The only way a power can not be 0 is when the base not equals 0
{x=0x−2=0
Solve the inequality
{x=0x=2
Find the intersection
x∈(−∞,0)∪(0,2)∪(2,+∞)
⎩⎨⎧x∈(−∞,0)∪(0,2)∪(2,+∞)x=3390x=3x∈(−∞,0)∪(0,2)∪(2,+∞)
Simplify
⎩⎨⎧x∈(−∞,0)∪(0,2)∪(2,+∞)x=3390x=3
Find the intersection
x∈(−∞,0)∪(0,3390)∪(3390,2)∪(2,3)∪(3,+∞)
(x−2)(x5)5(x2−9)÷x2×3x−10x−3=0,x∈(−∞,0)∪(0,3390)∪(3390,2)∪(2,3)∪(3,+∞)
Calculate
(x−2)(x5)5(x2−9)÷x2×3x−10x−3=0
Calculate
(x−2)x55(x2−9)÷x2×3x−10x−3=0
Multiply
More Steps

Multiply the terms
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
(x−2)x55(x2−9)÷3x3−10x−3=0
Multiply the terms
x5(x−2)5(x2−9)÷3x3−10x−3=0
Divide the terms
More Steps

Evaluate
x5(x−2)5(x2−9)÷3x3−10x−3
Multiply by the reciprocal
x5(x−2)5(x2−9)×x−33x3−10
Rewrite the expression
x5(x−2)5(x−3)(x+3)×x−33x3−10
Cancel out the common factor x−3
x5(x−2)5(x+3)×(3x3−10)
Multiply the terms
x5(x−2)5(x+3)(3x3−10)
x5(x−2)5(x+3)(3x3−10)=0
Cross multiply
5(x+3)(3x3−10)=x5(x−2)×0
Simplify the equation
5(x+3)(3x3−10)=0
Elimination the left coefficient
(x+3)(3x3−10)=0
Separate the equation into 2 possible cases
x+3=03x3−10=0
Solve the equation
More Steps

Evaluate
x+3=0
Move the constant to the right-hand side and change its sign
x=0−3
Removing 0 doesn't change the value,so remove it from the expression
x=−3
x=−33x3−10=0
Solve the equation
More Steps

Evaluate
3x3−10=0
Move the constant to the right-hand side and change its sign
3x3=0+10
Removing 0 doesn't change the value,so remove it from the expression
3x3=10
Divide both sides
33x3=310
Divide the numbers
x3=310
Take the 3-th root on both sides of the equation
3x3=3310
Calculate
x=3310
Simplify the root
More Steps

Evaluate
3310
To take a root of a fraction,take the root of the numerator and denominator separately
33310
Multiply by the Conjugate
33×332310×332
Simplify
33×332310×39
Multiply the numbers
33×332390
Multiply the numbers
3390
x=3390
x=−3x=3390
Check if the solution is in the defined range
x=−3x=3390,x∈(−∞,0)∪(0,3390)∪(3390,2)∪(2,3)∪(3,+∞)
Solution
x=−3
Show Solution
