Question
Simplify the expression
100b2−80b+16
Evaluate
(5b−2)2×4
Use the commutative property to reorder the terms
4(5b−2)2
Expand the expression
More Steps

Evaluate
(5b−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(5b)2−2×5b×2+22
Calculate
25b2−20b+4
4(25b2−20b+4)
Apply the distributive property
4×25b2−4×20b+4×4
Multiply the numbers
100b2−4×20b+4×4
Multiply the numbers
100b2−80b+4×4
Solution
100b2−80b+16
Show Solution

Find the roots
b=52
Alternative Form
b=0.4
Evaluate
(5b−2)2×4
To find the roots of the expression,set the expression equal to 0
(5b−2)2×4=0
Use the commutative property to reorder the terms
4(5b−2)2=0
Rewrite the expression
(5b−2)2=0
The only way a power can be 0 is when the base equals 0
5b−2=0
Move the constant to the right-hand side and change its sign
5b=0+2
Removing 0 doesn't change the value,so remove it from the expression
5b=2
Divide both sides
55b=52
Solution
b=52
Alternative Form
b=0.4
Show Solution
