Question
Simplify the expression
35u2−168uw+112w2
Evaluate
(5u−4w)(7u−4w×7)
Multiply the terms
(5u−4w)(7u−28w)
Apply the distributive property
5u×7u−5u×28w−4w×7u−(−4w×28w)
Multiply the terms
More Steps

Evaluate
5u×7u
Multiply the numbers
35u×u
Multiply the terms
35u2
35u2−5u×28w−4w×7u−(−4w×28w)
Multiply the numbers
35u2−140uw−4w×7u−(−4w×28w)
Multiply the numbers
35u2−140uw−28wu−(−4w×28w)
Multiply the terms
More Steps

Evaluate
−4w×28w
Multiply the numbers
−112w×w
Multiply the terms
−112w2
35u2−140uw−28wu−(−112w2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
35u2−140uw−28wu+112w2
Solution
More Steps

Evaluate
−140uw−28wu
Rewrite the expression
−140uw−28uw
Collect like terms by calculating the sum or difference of their coefficients
(−140−28)uw
Subtract the numbers
−168uw
35u2−168uw+112w2
Show Solution

Factor the expression
7(5u−4w)(u−4w)
Evaluate
(5u−4w)(7u−4w×7)
Multiply the terms
(5u−4w)(7u−28w)
Factor the expression
(5u−4w)×7(u−4w)
Solution
7(5u−4w)(u−4w)
Show Solution
