Question
Solve the equation(The real numbers system)
x∈∅
Evaluate
(5x+6)2+(13x−2)2=0
The statement is true only the each term equals to 0
{(5x+6)2=0(13x−2)2=0
Calculate
More Steps

Evaluate
(5x+6)2=0
The only way a power can be 0 is when the base equals 0
5x+6=0
Move the constant to the right-hand side and change its sign
5x=0−6
Removing 0 doesn't change the value,so remove it from the expression
5x=−6
Divide both sides
55x=5−6
Divide the numbers
x=5−6
Use b−a=−ba=−ba to rewrite the fraction
x=−56
{x=−56(13x−2)2=0
Calculate
More Steps

Evaluate
(13x−2)2=0
The only way a power can be 0 is when the base equals 0
13x−2=0
Move the constant to the right-hand side and change its sign
13x=0+2
Removing 0 doesn't change the value,so remove it from the expression
13x=2
Divide both sides
1313x=132
Divide the numbers
x=132
{x=−56x=132
Solution
x∈∅
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=−972−9744i,x2=−972+9744i
Alternative Form
x1≈−0.020619−0.453608i,x2≈−0.020619+0.453608i
Evaluate
(5x+6)2+(13x−2)2=0
Expand the expression
More Steps

Evaluate
(5x+6)2+(13x−2)2
Expand the expression
More Steps

Evaluate
(5x+6)2
Use (a+b)2=a2+2ab+b2 to expand the expression
(5x)2+2×5x×6+62
Calculate
25x2+60x+36
25x2+60x+36+(13x−2)2
Expand the expression
More Steps

Evaluate
(13x−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(13x)2−2×13x×2+22
Calculate
169x2−52x+4
25x2+60x+36+169x2−52x+4
Add the terms
More Steps

Evaluate
25x2+169x2
Collect like terms by calculating the sum or difference of their coefficients
(25+169)x2
Add the numbers
194x2
194x2+60x+36−52x+4
Subtract the terms
More Steps

Evaluate
60x−52x
Collect like terms by calculating the sum or difference of their coefficients
(60−52)x
Subtract the numbers
8x
194x2+8x+36+4
Add the numbers
194x2+8x+40
194x2+8x+40=0
Substitute a=194,b=8 and c=40 into the quadratic formula x=2a−b±b2−4ac
x=2×194−8±82−4×194×40
Simplify the expression
x=388−8±82−4×194×40
Simplify the expression
More Steps

Evaluate
82−4×194×40
Multiply the terms
More Steps

Multiply the terms
4×194×40
Multiply the terms
776×40
Multiply the numbers
31040
82−31040
Evaluate the power
64−31040
Subtract the numbers
−30976
x=388−8±−30976
Simplify the radical expression
More Steps

Evaluate
−30976
Evaluate the power
30976×−1
Evaluate the power
30976×i
Evaluate the square root
More Steps

Evaluate
30976
Write the number in exponential form with the base of 176
1762
Reduce the index of the radical and exponent with 2
176
176i
x=388−8±176i
Separate the equation into 2 possible cases
x=388−8+176ix=388−8−176i
Simplify the expression
More Steps

Evaluate
x=388−8+176i
Divide the terms
More Steps

Evaluate
388−8+176i
Rewrite the expression
3884(−2+44i)
Cancel out the common factor 4
97−2+44i
Use b−a=−ba=−ba to rewrite the fraction
−972−44i
Simplify
−972+9744i
x=−972+9744i
x=−972+9744ix=388−8−176i
Simplify the expression
More Steps

Evaluate
x=388−8−176i
Divide the terms
More Steps

Evaluate
388−8−176i
Rewrite the expression
3884(−2−44i)
Cancel out the common factor 4
97−2−44i
Use b−a=−ba=−ba to rewrite the fraction
−972+44i
Simplify
−972−9744i
x=−972−9744i
x=−972+9744ix=−972−9744i
Solution
x1=−972−9744i,x2=−972+9744i
Alternative Form
x1≈−0.020619−0.453608i,x2≈−0.020619+0.453608i
Show Solution
