Question
Simplify the expression
10x3−3x2+x
Evaluate
(5x2×2x)−(3x2−x)
Multiply
More Steps

Multiply the terms
5x2×2x
Multiply the terms
10x2×x
Multiply the terms with the same base by adding their exponents
10x2+1
Add the numbers
10x3
10x3−(3x2−x)
Solution
10x3−3x2+x
Show Solution

Factor the expression
x(10x2−3x+1)
Evaluate
(5x2×2x)−(3x2−x)
Multiply
More Steps

Multiply the terms
5x2×2x
Multiply the terms
10x2×x
Multiply the terms with the same base by adding their exponents
10x2+1
Add the numbers
10x3
10x3−(3x2−x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10x3−3x2+x
Rewrite the expression
x×10x2−x×3x+x
Solution
x(10x2−3x+1)
Show Solution

Find the roots
x1=203−2031i,x2=203+2031i,x3=0
Alternative Form
x1≈0.15−0.278388i,x2≈0.15+0.278388i,x3=0
Evaluate
(5x2×2x)−(3x2−x)
To find the roots of the expression,set the expression equal to 0
(5x2×2x)−(3x2−x)=0
Multiply
More Steps

Multiply the terms
5x2×2x
Multiply the terms
10x2×x
Multiply the terms with the same base by adding their exponents
10x2+1
Add the numbers
10x3
10x3−(3x2−x)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10x3−3x2+x=0
Factor the expression
x(10x2−3x+1)=0
Separate the equation into 2 possible cases
x=010x2−3x+1=0
Solve the equation
More Steps

Evaluate
10x2−3x+1=0
Substitute a=10,b=−3 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=2×103±(−3)2−4×10
Simplify the expression
x=203±(−3)2−4×10
Simplify the expression
More Steps

Evaluate
(−3)2−4×10
Multiply the numbers
(−3)2−40
Rewrite the expression
32−40
Evaluate the power
9−40
Subtract the numbers
−31
x=203±−31
Simplify the radical expression
More Steps

Evaluate
−31
Evaluate the power
31×−1
Evaluate the power
31×i
x=203±31×i
Separate the equation into 2 possible cases
x=203+31×ix=203−31×i
Simplify the expression
x=203+2031ix=203−31×i
Simplify the expression
x=203+2031ix=203−2031i
x=0x=203+2031ix=203−2031i
Solution
x1=203−2031i,x2=203+2031i,x3=0
Alternative Form
x1≈0.15−0.278388i,x2≈0.15+0.278388i,x3=0
Show Solution
