Question
Simplify the expression
20x3−3x2+2x
Evaluate
(5x2×4x)−(3x2−2x)
Multiply
More Steps

Multiply the terms
5x2×4x
Multiply the terms
20x2×x
Multiply the terms with the same base by adding their exponents
20x2+1
Add the numbers
20x3
20x3−(3x2−2x)
Solution
20x3−3x2+2x
Show Solution

Factor the expression
x(20x2−3x+2)
Evaluate
(5x2×4x)−(3x2−2x)
Multiply
More Steps

Multiply the terms
5x2×4x
Multiply the terms
20x2×x
Multiply the terms with the same base by adding their exponents
20x2+1
Add the numbers
20x3
20x3−(3x2−2x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20x3−3x2+2x
Rewrite the expression
x×20x2−x×3x+x×2
Solution
x(20x2−3x+2)
Show Solution

Find the roots
x1=403−40151i,x2=403+40151i,x3=0
Alternative Form
x1≈0.075−0.307205i,x2≈0.075+0.307205i,x3=0
Evaluate
(5x2×4x)−(3x2−2x)
To find the roots of the expression,set the expression equal to 0
(5x2×4x)−(3x2−2x)=0
Multiply
More Steps

Multiply the terms
5x2×4x
Multiply the terms
20x2×x
Multiply the terms with the same base by adding their exponents
20x2+1
Add the numbers
20x3
20x3−(3x2−2x)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20x3−3x2+2x=0
Factor the expression
x(20x2−3x+2)=0
Separate the equation into 2 possible cases
x=020x2−3x+2=0
Solve the equation
More Steps

Evaluate
20x2−3x+2=0
Substitute a=20,b=−3 and c=2 into the quadratic formula x=2a−b±b2−4ac
x=2×203±(−3)2−4×20×2
Simplify the expression
x=403±(−3)2−4×20×2
Simplify the expression
More Steps

Evaluate
(−3)2−4×20×2
Multiply the terms
(−3)2−160
Rewrite the expression
32−160
Evaluate the power
9−160
Subtract the numbers
−151
x=403±−151
Simplify the radical expression
More Steps

Evaluate
−151
Evaluate the power
151×−1
Evaluate the power
151×i
x=403±151×i
Separate the equation into 2 possible cases
x=403+151×ix=403−151×i
Simplify the expression
x=403+40151ix=403−151×i
Simplify the expression
x=403+40151ix=403−40151i
x=0x=403+40151ix=403−40151i
Solution
x1=403−40151i,x2=403+40151i,x3=0
Alternative Form
x1≈0.075−0.307205i,x2≈0.075+0.307205i,x3=0
Show Solution
