Question
Simplify the expression
10x4−40x3−15x2−2x7+8x6+3x5
Evaluate
(5x2−x5)(2x2−8x−3)
Apply the distributive property
5x2×2x2−5x2×8x−5x2×3−x5×2x2−(−x5×8x)−(−x5×3)
Multiply the terms
More Steps

Evaluate
5x2×2x2
Multiply the numbers
10x2×x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
10x4
10x4−5x2×8x−5x2×3−x5×2x2−(−x5×8x)−(−x5×3)
Multiply the terms
More Steps

Evaluate
5x2×8x
Multiply the numbers
40x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
40x3
10x4−40x3−5x2×3−x5×2x2−(−x5×8x)−(−x5×3)
Multiply the numbers
10x4−40x3−15x2−x5×2x2−(−x5×8x)−(−x5×3)
Multiply the terms
More Steps

Evaluate
−x5×2x2
Multiply the numbers
−2x5×x2
Multiply the terms
More Steps

Evaluate
x5×x2
Use the product rule an×am=an+m to simplify the expression
x5+2
Add the numbers
x7
−2x7
10x4−40x3−15x2−2x7−(−x5×8x)−(−x5×3)
Multiply the terms
More Steps

Evaluate
−x5×8x
Multiply the numbers
−8x5×x
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
−8x6
10x4−40x3−15x2−2x7−(−8x6)−(−x5×3)
Use the commutative property to reorder the terms
10x4−40x3−15x2−2x7−(−8x6)−(−3x5)
Solution
10x4−40x3−15x2−2x7+8x6+3x5
Show Solution

Factor the expression
x2(5−x3)(2x2−8x−3)
Evaluate
(5x2−x5)(2x2−8x−3)
Solution
More Steps

Evaluate
5x2−x5
Rewrite the expression
x2×5−x2×x3
Factor out x2 from the expression
x2(5−x3)
x2(5−x3)(2x2−8x−3)
Show Solution

Find the roots
x1=24−22,x2=0,x3=35,x4=24+22
Alternative Form
x1≈−0.345208,x2=0,x3≈1.709976,x4≈4.345208
Evaluate
(5x2−x5)(2x2−8x−3)
To find the roots of the expression,set the expression equal to 0
(5x2−x5)(2x2−8x−3)=0
Separate the equation into 2 possible cases
5x2−x5=02x2−8x−3=0
Solve the equation
More Steps

Evaluate
5x2−x5=0
Factor the expression
x2(5−x3)=0
Separate the equation into 2 possible cases
x2=05−x3=0
The only way a power can be 0 is when the base equals 0
x=05−x3=0
Solve the equation
More Steps

Evaluate
5−x3=0
Move the constant to the right-hand side and change its sign
−x3=0−5
Removing 0 doesn't change the value,so remove it from the expression
−x3=−5
Change the signs on both sides of the equation
x3=5
Take the 3-th root on both sides of the equation
3x3=35
Calculate
x=35
x=0x=35
x=0x=352x2−8x−3=0
Solve the equation
More Steps

Evaluate
2x2−8x−3=0
Substitute a=2,b=−8 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×28±(−8)2−4×2(−3)
Simplify the expression
x=48±(−8)2−4×2(−3)
Simplify the expression
More Steps

Evaluate
(−8)2−4×2(−3)
Multiply
(−8)2−(−24)
Rewrite the expression
82−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+24
Evaluate the power
64+24
Add the numbers
88
x=48±88
Simplify the radical expression
More Steps

Evaluate
88
Write the expression as a product where the root of one of the factors can be evaluated
4×22
Write the number in exponential form with the base of 2
22×22
The root of a product is equal to the product of the roots of each factor
22×22
Reduce the index of the radical and exponent with 2
222
x=48±222
Separate the equation into 2 possible cases
x=48+222x=48−222
Simplify the expression
x=24+22x=48−222
Simplify the expression
x=24+22x=24−22
x=0x=35x=24+22x=24−22
Solution
x1=24−22,x2=0,x3=35,x4=24+22
Alternative Form
x1≈−0.345208,x2=0,x3≈1.709976,x4≈4.345208
Show Solution
