Question
Simplify the expression
30x13−120x12+120x11
Evaluate
5x6(x−2)(x−2)×2×3x5
Multiply the terms
More Steps

Evaluate
5×2×3
Multiply the terms
10×3
Multiply the numbers
30
30x6(x−2)(x−2)x5
Multiply the terms with the same base by adding their exponents
30x6+5(x−2)(x−2)
Add the numbers
30x11(x−2)(x−2)
Multiply the terms
30x11(x−2)2
Expand the expression
More Steps

Evaluate
(x−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×2+22
Calculate
x2−4x+4
30x11(x2−4x+4)
Apply the distributive property
30x11×x2−30x11×4x+30x11×4
Multiply the terms
More Steps

Evaluate
x11×x2
Use the product rule an×am=an+m to simplify the expression
x11+2
Add the numbers
x13
30x13−30x11×4x+30x11×4
Multiply the terms
More Steps

Evaluate
30x11×4x
Multiply the numbers
120x11×x
Multiply the terms
More Steps

Evaluate
x11×x
Use the product rule an×am=an+m to simplify the expression
x11+1
Add the numbers
x12
120x12
30x13−120x12+30x11×4
Solution
30x13−120x12+120x11
Show Solution

Find the roots
x1=0,x2=2
Evaluate
(5x6)(x−2)(x−2)×2(3x5)
To find the roots of the expression,set the expression equal to 0
(5x6)(x−2)(x−2)×2(3x5)=0
Multiply the terms
5x6(x−2)(x−2)×2(3x5)=0
Multiply the terms
5x6(x−2)(x−2)×2×3x5=0
Multiply the terms
More Steps

Multiply the terms
5x6(x−2)(x−2)×2×3x5
Multiply the terms
More Steps

Evaluate
5×2×3
Multiply the terms
10×3
Multiply the numbers
30
30x6(x−2)(x−2)x5
Multiply the terms with the same base by adding their exponents
30x6+5(x−2)(x−2)
Add the numbers
30x11(x−2)(x−2)
Multiply the terms
30x11(x−2)2
30x11(x−2)2=0
Elimination the left coefficient
x11(x−2)2=0
Separate the equation into 2 possible cases
x11=0(x−2)2=0
The only way a power can be 0 is when the base equals 0
x=0(x−2)2=0
Solve the equation
More Steps

Evaluate
(x−2)2=0
The only way a power can be 0 is when the base equals 0
x−2=0
Move the constant to the right-hand side and change its sign
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=0x=2
Solution
x1=0,x2=2
Show Solution
